
T H E W O R L D ’ S L E A D I N G i - T E C H N O L O G Y M A G A Z I N E W W W . J A V A D E V E L O P E R S J O U R N A L . C O M

OFFSHORE OUTSOURCING: MAGIC BULLET OR DIRTY WORD? PAGE 66

FEBRUARY 2004 VOLUME:9 ISSUE:2

RETAILERS PLEASE DISPLAY
UNTIL APRIL 30, 2004

END
MIDDLEWARE

TH
E

OF

EXCLUSIVE...

Go Wild Wirelessly
with BLUETOOTH

PLUS...

Mobility:

Color
Management:

Using COLOR
Technology in Java

Java Enterprise
Viewpoint: Our ROOTS

by Sun’s Jonathan Schwartz

...FROM THE FOUNDING EDITOR

BENFIELD ON

i-TECHNOLOGY

BEA WEBLOGIC WORKSHOP 8.1
makes you more

BEA's WebLogic Workshop 8.1 has won every major award for software development tools in the
past year. It's a full-featured Java development environment that lets you visually build and assemble
enterprise-scale Web Services, Web Applications, JSPs, Portals, EJBs, and Business Process models
based on the latest standards and open source technologies.

But don't take their word for it, find out for yourself now, for free.

Development Tools
December 30, 2003
BEA WebLogic Workshop 8.1
BEA Systems, Inc.

“A shared, consistent
development platform…for
J2EE experts and business-
oriented developers alike.”

CRN Test Center
Product of the Year

“By far the most innovative
development tool reviewed
this year…when compared
with other tools, Workshop
blew away the competition.”

Software Development Jolt
Product Excellence Award

“The integration of an IDE,
controls and a deployment
environment…greatly enhances
developer productivity.”

Java Pro Readers
Choice Award

“WebLogic Workshop
empowers all application
developers…not just J2EE
developers.”

©2004 BEA Systems, Inc. BEA and WebLogic are registered trademarks of BEA Systems, Inc. PC Magazine Technical Excellence Award Logo is a trademark of Ziff Davis Publishing Holdings, Inc. Used under
license. All other company names are trademarks of their respective owners.

Get it now. For free. Visit http://dev2dev.bea.com/workshop1

© 2003 InterSystems Corporation. All rights reserved. InterSystems Caché is a registered trademark of InterSystems Corporation. 12-03

Relational
database

Object-oriented
development

Try a better database. For free.
Download a free, fully-functional, non-expiring version of Caché or request it on CD at www.InterSystems.com/match3

that dramatically reduces the time to build and
modify applications.

The reliability of Caché is proven every day in “life-
or-death” applications at thousands of the world’s largest
hospitals. Caché is so reliable, it’s the leading database in
healthcare – and it powers enterprise applications in
financial services, government and many other sectors.

We are InterSystems, a specialist in data management
technology for twenty-five years. We provide 24x7
support to four million users in 88 countries. Caché is
available for Windows, OpenVMS, Linux and major
UNIX platforms – and it is deployed on systems ranging
from two to over 10,000 simultaneous users.

If your back-end database isn't a good match for your
front-end development, you need a new database.

Caché is the post-relational database that combines
high-performance SQL for faster queries and an advanced
object database for rapidly storing and accessing objects.
With Caché, no mapping is required between object and
relational views of data. That means huge savings in both
development and processing time.

Applications built on Caché are massively scalable and
lightning-fast. Plus, they require minimal or no database
administration.

More than just a database system, Caché incorporates
a powerful Web application development environment

A BETTER DATABASE CAN SPEED
UP YOUR DEVELOPMENT CYCLE

5February 2004www.JavaDevelopersJournal.com

COLOR MANAGEMENT

Using Color Technology
in Java
Heighten the visual impact of your application
by John Chamberlain.................................56

LABS

Droplets by Droplets Inc.
Reviewed by Somnath Banerjee.................................62

JSR WATCH

From Within the Java
Community Process Program
From proposals to final approvals
by Onno Kluyt.................................64

@ THE BACKPAGE

Offshore Outsourcing:
Magic Bullet or Dirty Word?
It all depends on your perspective
by Jack Martin.................................66

CORE AND INTERNALS VIEWPOINT

Man with an Open Heart
by Jason Bell.................................32

FRAMEWORKS

Java Collections
Managing collections
by David McReynolds.................................34

LABS

DevPartner 3.0.1 Java Edition
by Compuware Corporation
Reviewed by Vijay Phagura.................................50

DESKTOP JAVA VIEWPOINT

Behind the Glass
by Joe Winchester.................................52

GUI

Turning Components into
Domain GUI Objects (DGO)
Improving your design
by Ted M. Young.................................54

FROM THE FOUNDING EDITOR

Development Tools for All
by Steve Benfield.................................6
FROM THE EDITOR

Keeping the Faith
by Joe Ottinger.................................8
JAVA ENTERPRISE VIEWPOINT

Our Roots
by Kirk Pepperdine.................................10

USE CASES

HTTP Session
Garbage Collector
Removing cached data
by Abhinasha Karana12

MOBILITY

Go Wild Wirelessly
with Bluetooth and Java
Developing portable Bluetooth apps
by Ben Hui.................................20

ccoonntteennttss
FEBRUARY 2004 VOLUME:9 ISSUE:2

FeaturesCover Story: Industry Perspective

The Delegation-Managed
Persistence Entity Bean

by Tal Cohen

No Fluff, Just Stuff:
An Interview with Jay Zimmerman

and Ted Neward
by Kirk Pepperdine

5858

JDJ (ISSN#1087-6944) is published monthly (12 times a year) for $69.99 by
SYS-CON Publications, Inc., 135 Chestnut Ridge Road, Montvale, NJ 07645.
Periodicals postage rates are paid at Montvale, NJ 07645 and additional
mailing offices. Postmaster: Send address changes to: JDJ, SYS-CON
Publications, Inc., 135 Chestnut Ridge Road, Montvale, NJ 07645.

42

28

Java New Input/Output
by Vishwanath K

Jonathan
Schwartz

JDJ Exclusive...

Jonathan
Schwartz

EVP of Software, Sun Microsystems

16

6 February 2004 www.JavaDevelopersJournal.com

y dad is a DBA. However, he does-
n’t design large databases, he
doesn’t write extremely elaborate
multiselect SQLs (I don’t think

he’s ever read a Joe Celko book), and he cer-
tainly doesn’t care about the latest, greatest
news in the world of technology. He’s been
at the same place for about 15 years , is re-
spected by his co-workers, and makes sure
that the rest of his organization gets the
information necessary to get their jobs done.

I have another friend who is a program-
mer. She works with Visual Studio, cranks
out form-based apps that attach to data,
and basically helps build client/server
apps for her organization. The apps she
builds are used by lots of people in her
organization, thereby she provides value
and remains employed.

Neither one of them really cares about the
latest battles over Web services standards,
about the Microsoft versus Linux/open
source wars, about the JCP process, or desk-
top Linux. They represent a large percentage
of the people you meet in typical IT organi-
zations; they make up the teams that devel-
op applications that you use in your organi-
zations. I call them “business developers.”

The other primary group in IT develop-
ment organizations is the “technology
elites.” These are the architects and senior
developers who know how to use UML cor-
rectly, who know the latest Java standards,
and who can write complex server code
with ease. Tools used by this group need to
include analysis/design tools, strict stan-
dards compliance, automation/generation
of redundant things, and most of all – the
ability to circumvent the tool and get
straight to the code without interference.

Typically this group of technology elites
might represent 10% of an IT development
organization. They tend to be the ones who
make decisions on which tools and tech-
nologies to use and drive the technical
direction of the company. The fact that
you’re reading this magazine means there’s
a high probability that you’re a technology
elite.

Business developers can create GUIs,
write HTML and JavaScript, build work-
flows, execute services, make mainte-
nance changes, etc. Given a decent set of
specs, some existing services to call, and a
productive GUI that abstracts the low
level, this group can produce lots of appli-

cations and contribute huge value to the
IT organization. They build the day-in and
day-out applications that your employees,
customers, and partners run. These devel-
opers don’t really care if what they build
follows the latest industry standards, uses
entity beans, or uses the hottest new
products, it’s their tool and its productivi-
ty that is important to them. They just
want to get applications out the door; as
long as some of the basics are covered,
like running on top of a J2EE or servlet
engine, they are happy.

The problem is that creating productivity
out of a set of industry standards is compli-
cated. Real productivity and automation of
development tasks requires an advanced
(aka proprietary) framework and an intuitive
GUI. Every vendor that has a solution in the
Java J2EZ space (Making J2EE easier= J2EZ)
has a proprietary solution they’re selling. I’m
not characterizing this as a bad thing, just a
necessary thing and something you need to
realize when you go for productivity.

BEA and IBM have made strides in pro-
ductivity but their solutions only work on
their application servers and platforms, and
they still miss the mark for the vast majority
of business developers. While they do sup-
port standards, they fall short of the J2EE
promise of platform independence. Smaller
vendors build systems that will work on all
the major Java platforms. Borland and
Compuware (and IBM Rational) have great
tools that target all the platforms, but they’re
geared toward technology elites and model-
driven development. M7 and Exadel have
built excellent environments for automating
Struts/JSP application development, but
there are questions on how usable they are
for the business developer. Then you have
vendors, such as ClearNova, who have solu-
tions based on J2EE but have decided to go
for massive productivity by sacrificing some
standards support such as Struts.

There are many approaches to applica-
tion development, and they have to suit the
needs of your development organization. If
your group is mostly technology elites,
there are plenty of tools for you to look at. If
you have a mix, then it might mean you
need some tools for both groups. If your
team is mostly business developers and
speed of development and productivity is
the name of the game, then a slightly less-
standard approach might be in order.

FROM THE FOUNDING EDITOR

Steve Benfield is an
independent consultant

based in Atlanta.
Previously he was

CTO of SilverStream
Software. Steve was

the editor of SYS-CON’s
first magazine,
PBDJ, in 1994.

steve.benfield@earthlink.net

H
O

M
E

C
O

R
E

D
E

SK
TO

P
E

N
T

E
R

PR
IS

E

Steve Benfield

Development
Tools for All

M

International Advisory Board
CCaallvviinn AAuussttiinn (Sun)

JJaassoonn BBeellll (Independent)
JJaassoonn BBrriiggggss (Independent)

Jeerreemmyy GGeeeellaann (SYS-CON)
TThhoorrsstteenn LLaauuxx (Sun)
RRiicckkaarrdd ÖÖbbeerrgg (Independent)

JJooee OOttttiinnggeerr (Independent)
BBiillll RRootthh (E.piphany)

AAjjiitt SSaaggaarr (Independent)
EErriicc SSttaahhll (BEA)

JJoonn SStteevveennss (Apache)
AAaarroonn WWiilllliiaammss (JCP)

AAllaann WWiilllliiaammssoonn (SYS-CON)
JJooee WWiinncchheesstteerr (IBM)

BBllaaiirr WWyymmaann (IBM)

Editorial
Editor-at-Large: AAllaann WWiilllliiaammssoonn
Editor-in-Chief: JJoosseepphh OOttttiinnggeerr

Executive Editor: NNaannccyy VVaalleennttiinnee
Java-Enterprise Editor: KKiirrkk PPeeppppeerrddiinnee

Core and Internals Editor: JJaassoonn BBeellll
Desktop Java Editor: JJooee WWiinncchheesstteerr

Gaming Editor: JJaassoonn RR.. BBrriiggggss
Contributing Editor: AAjjiitt SSaaggaarr
Contributing Editor: GGlleenn CCoorrddrreeyy

Founding Editor: SSeeaann RRhhooddyy

Production
Production Consultant: JJiimm MMoorrggaann
Associate Art Director: TTaammii BBeeaattttyy

Associate Editors: JJaammiiee MMaattuussooww
GGaaiill SScchhuullttzz
JJeeaann CCaassssiiddyy
JJeennnniiffeerr VVaann WWiinncckkeell

Online Editor: LLiinn GGooeettzz
Technical Editor: BBaahhaaddiirr KKaarruuvv,, PPhhDD

Writers in This Issue
Somnath Banerjee, Jason Bell, Steve Benfield,

John Chamberlain, Tal Cohen, Ben Hui, Jeremy Geelan,
Abhinasha Karana, Viswanath Krishnan

Onno Kluyt, Jack Martin, David McReynolds,
Joseph Ottinger, Kirk Pepperdine, Vijay Phagura,

Joe Winchester, Ted Young

To submit a proposal for an article, go to
http://grids.sys-con.com/proposal

Subscriptions
For subscriptions and requests for bulk orders, please send your

letters to Subscription Department subscribe@sys-con.com.
Cover Price: $5.99/issue. Domestic: $69.99/yr. (12 Issues)

Canada/Mexico: $99.99/yr. Overseas: $99.99/yr. (U.S. Banks or
Money Orders) Back Issues: $10/ea. International $15/ea.

Editorial Offices
SYS-CON Media, 135 Chestnut Ridge Rd., Montvale, NJ 07645

Telephone: 201 802-3000 Fax: 201 782-9638

Java Developer’s Journal (ISSN#1087-6944) is published monthly
(12 times a year) for $69.99 by SYS-CON Publications, Inc., 135
Chestnut Ridge Road, Montvale, NJ 07645. Periodicals postage

rates are paid at Montvale, NJ 07645 and additional mailing
offices. Postmaster: Send address changes to: Java Developer’s
Journal, SYS-CON Publications, Inc., 135 Chestnut Ridge Road,

Montvale, NJ 07645.

©Copyright
Copyright © 2004 by SYS-CON Publications, Inc. All rights

reserved. No part of this publication may be reproduced or
transmitted in any form or by any means, electronic or mechan-

ical, including photocopy or any information storage and
retrieval system, without written permission. For promotional

reprints, contact reprint coordinator Carrie Gebert, carrieg@sys-
con.com. SYS-CON Media and SYS-CON Publications, Inc.,

reserve the right to revise, republish and authorize its readers
to use the articles submitted for publication.

Worldwide Newsstand Distribution
Curtis Circulation Company, New Milford, NJ

For List Rental Information:
Kevin Collopy: 845 731-2684, kevin.collopy@edithroman.com
Frank Cipolla: 845 731-3832, frank.cipolla@epostdirect.com

Java and Java-based marks are trademarks or registered
trademarks of Sun Microsystems, Inc., in the United States and
other countries. SYS-CON Publications, Inc., is independent of
Sun Microsystems, Inc. All brand and product names used on
these pages are trade names, service marks or trademarks of

their respective companies.

performance. And you ll be left facing increasing development, maintenance and testing costs plus potential
loss of revenue. DataDirect offers the industry's most comprehensive, proven suite of database-independent Type 4
JDBC drivers. Our extensively tested J2EE-certified drivers include the most advanced JDBC 3.0 features including
Distributed Transaction Support, Connection Pooling and BLOB/CLOB support.
DataDirect Connect® for JDBC® is the SPECjAppServer and ECperf performance leader.

www.datadirect.com
800-876-3101

DataDirect Connect is a registered trademark of DataDirect Technologies. JDBC is a registered trademark of Sun Microsystems, Inc. in the United States and other countries. DataDirect Technologies is independent of Sun Microsystems, Inc. All other trademarks are the property of their respective owners.

Find out what else you might be missing. Download our whitepaper,
"What you don't know about database drivers CAN hurt you" @ www.datadirect.com/JDJ

8 February 2004 www.JavaDevelopersJournal.com

President and CEO:
FFuuaatt KKiirrccaaaallii fuat@sys-con.com

Vice President, Business Development:
GGrriisshhaa DDaavviiddaa grisha@sys-con.com

Group Publisher:
JJeerreemmyy GGeeeellaann jeremy@sys-con.com

Advertising
Senior Vice President, Sales and Marketing:

CCaarrmmeenn GGoonnzzaalleezz carmen@sys-con.com
Vice President, Sales and Marketing:
MMiilleess SSiillvveerrmmaann miles@sys-con.com

Advertising Sales Director:
RRoobbyynn FFoorrmmaa roybn@sys-con.com

Director, Sales and Marketing:
MMeeggaann RRiinngg megan@sys-con.com

Advertising Sales Managers:
AAlliissaa CCaattaallaannoo alisa@sys-con.com
CCaarrrriiee GGeebbeerrtt carrieg@sys-con.com

Associate Sales Managers:
KKrriissttiinn KKuuhhnnllee kristen@sys-con.com

BBeetthh JJoonneess beth@sys-con.com

Editorial
Executive Editor:

NNaannccyy VVaalleennttiinnee nancy@sys-con.com
Associate Editors:

JJaammiiee MMaattuussooww jamie@sys-con.com
GGaaiill SScchhuullttzz gail@sys-con.com
JJeeaann CCaassssiiddyy jean@sys-con.com

JJeennnniiffeerr VVaann WWiinncckkeell jennifer@sys-con.com
Online Editor:

LLiinn GGooeettzz lin@sys-con.com

Production
Production Consultant:

JJiimm MMoorrggaann jim@sys-con.com
Lead Designer:

TTaammii BBeeaattttyy tami@sys-con.com
Art Director:

AAlleexx BBootteerroo alex@sys-con.com
Associate Art Directors:

LLoouuiiss FF.. CCuuffffaarrii louis@sys-con.com
RRiicchhaarrdd SSiillvveerrbbeerrgg richards@sys-con.com

Web Services
Vice President, Information Systems:
RRoobbeerrtt DDiiaammoonndd robert@sys-con.com

Web Designers:
SStteepphheenn KKiillmmuurrrraayy stephen@sys-con.com
CChhrriissttoopphheerr CCrrooccee chris@sys-con.com

Accounting
Accounts Receivable:

CChhaarrlloottttee LLooppeezz charlotte@sys-con.com
Financial Analyst:

JJooaann LLaaRRoossee joan@sys-con.com
Accounts Payable:

BBeettttyy WWhhiittee betty@sys-con.com

SYS-CON Events
President, SYS-CON Events:

GGrriisshhaa DDaavviiddaa grisha@sys-con.com
Conference Manager:
LLiinn GGooeettzz lin@sys-con.com

National Sales Manager:
SSeeaann RRaammaann raman@sys-con.com

Customer Relations
Circulation Service Coordinators:

SShheelliiaa DDiicckkeerrssoonn shelia@sys-con.com
EEddnnaa EEaarrllee RRuusssseellll edna@sys-con.com

LLiinnddaa LLiippttoonn linda@sys-con.com
JDJ Store Manager:

BBrruunniillddaa SSttaarrooppoollii brunilda@sys-con.com

n the Java community you have two
schools of thought: the zealots, if
you will, who feel that pure Java is
worth the attempt, and the compro-

misers, who feel it’s more important to
use Java no matter what.

Swing against SWT is a good exam-
ple of this: SWT is a compromise,
where native GUI elements are used
to further Java, and Swing is the pure
Java element. The GUI is hardly the
only battle fought by these two
“camps.” Think of those who advocate
Java-to-native compilation (or oppose
it), or those who want Java to have
features used by C#, like attributes
and autoboxing (and those who don’t
want those features). They’re similar
issues, fought for and over with the
passion normally reserved for raw
survival.

I find myself on the zealots’ side,
but I have to confess that I under-
stand those who do not. Perhaps the
zealots – the “pure Java” camp – are
throwing the dice, hoping Java is
strong enough right now to survive
and win. Throwing the dice means
you might win…and you might lose –
and Java might become irrelevant.
Compromising might subvert the
original intent, but also ensure the
survival of the technology and the
benefits it has brought and continues
to bring.

It could be that the time is ripening
for open source Java, with the com-
mits being validated by Sun to pre-
vent wild strains in a methodology
similar to that followed by Linux. Java
is currently burdened by its appear-
ance as both a product (see the “Java
Desktop,” for example) and a com-
modity (witness the various add-ons,
such as SWT and JGoodies, which
purport to make “core Java” better or
easier or, if you like, “faster”). The
add-on products aren’t bad, per se,

but with the confusion over Java’s
core role, they fracture the founda-
tion for the community. We need to
see Java as a commodity, as some-
thing that everyone can use, such
that Sun is itself a controlling interest
of an available technology – not the
controlling interest of a product that
everyone else is allowed to use,
because the allowance itself grants
value. It’s either valuable or it’s not. I
say it is – but the longer it’s shared
grudgingly, the less valuable it
appears.

What I would like to see is a viable
future strategy. I’m willing to accept
that SWT fixed some issues present in
an older version of the JRE, and the
native OS look and feel is an advan-
tage for those who wish it. (I personal-
ly switch OSes too often to want a
native look and feel. I want my appli-
cations to work the same regardless of
OS.) That said, I think that Swing has
caught up to SWT in many ways and,
in other ways, I think it will catch up if
it’s important enough, and eventually
you’ll see SWT as I do: as a split in
Java, in what could be a unified front.
It’s important to me that Java has a
plan for handling situations like this,
where there’s a viability in “pure Java”
that needs to be preserved, but an
“impure Java” possibility needs to be
addressed.

I wish I could see the future and tell
you which camp was better for Java:
the one that advocates a “pure vision,”
despite being flawed in perceptible
ways, or the one that advocates the
surrender of a fight that, in their opin-
ion, not only isn’t winnable, but has
already been lost. The optimist in me
says that the former view is better, that
flaws can be corrected with time…but
the existence of the latter worries me,
unless steps are taken to use the
strengths of all involved.

FROM THE EDITOR

Joseph Ottinger is a consultant
with Fusion Alliance

(www.fusionalliance.com)
and is a frequent contributor

to open source projects in
a number of capacities.

Joe is also the acting
chairman of the JDJ

Editorial Advisory Board.

josephottinger@sys-con.com

H
O

M
E

C
O

R
E

D
E

SK
TO

P
E

N
T

E
R

PR
IS

E

Keeping the Faith

I

Joe Ottinger
Editor-in-Chief

Leaner, Meaner, Faster Java Development.

Take a test flight today: Sit down, buckle up and hang on at go.borland.com/ j3

Made in Borland® Copyright © 2004 Borland Software Corporation. All rights reserved. Java and all Java-based marks are trademarks
or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All Borland brand and product names are trademarks or
registered trademarks of Borland Software Corporation in the United States and other countries. • 21431

Borland
®

JBuilder
®

Developer, from the #1 Java IDE company in the world. It's all the power you crave. Yet
lightweight and agile. At a price that won’t leave you grounded. Automate the routine stuff. Handcraft the unique.
Blast through every stage of the process, with more bullet-proof results. Whether your app is headed to the desktop,
Web, or mobile, Borland JBuilder Developer gets you up and going fast. And lands the product flawlessly.

• Customizable code editor with CodeInsight™ and ErrorInsight™ • Import project source from any IDE or editor • Two-way visual Struts designer • JSP™

Tag Library/framework support • Local and remote servlet/JSP debugging • XML and database tools • Develop, debug and deploy mobile applications
• Integrated unit testing • Advanced build and configuration management with Apache™ Ant • Archive builder • OpenTools API

10 February 2004 www.JavaDevelopersJournal.com

o you enjoy history? I do. In fact, I’ve always enjoyed
history for I’ve always found that understanding the
past has been useful in helping me to understand the
here and now. Part of my here and now is the taking

on of the role of enterprise editor. The question for me is, how
did I get here?

When I look back at my career, I realize that my choices have
allowed me to be closely aligned with many aspects of core
J2EE technologies for more than 15 years. Yes, I do know that
J2EE has not been here for 15 years, but when you look past
that exact moment in time when the idea for J2EE was first
hatched, you can see a vast trail of technology and research
that has gotten us to where we are today. My interest in history
has led me to follow that trail and, as is the case with most his-
torical tales, I was taken by surprise by just how far back you
need to travel. Take the virtual machine, for instance.

In 1965, a team of engineers working for IBM first devised
a virtual machine so they could study multiprogramming
operating systems. What they meant by virtual machine at
that time was a duplicate of the actual machine they were
testing on, but the VM had less memory. If you think about
the Java Virtual Machine, the definition is just about the
same. Okay, there’s not a real Java machine per se, but the
JVM does have less memory than what is available in the
underlying hardware/OS.

From these raw beginnings came Dijskstra’s work, where he
built an operating system by layering a number of VMs on top
of each other. Each VM was an abstraction of some underly-
ing portion of the OS. What followed was yet another
improvement by another IBM team, which resulted in the
creation of the VM/CMS, a time-sharing OS for the IBM 370.
Right around that time, Alan Kay laid the groundwork for
Smalltalk, considered to be the de facto standard for OO tech-
nologies. This brief paragraph is only the tip of the iceberg of
the research and development that really started in the late
’50s. Just from this little bit of history, we can see through the
marketing hype and understand why Java is not just a lan-
guage – it truly is a technology platform.

Legend has it that Bill Joy conceived of the principles
behind Java in the late 1970s, but it wasn’t until the early ’90s
that the necessary ingredients came together to make it a
reality. Even as early on as the late ’70s, Smalltalk, Lisp, and a
number of obscure languages had already been operational

for a number of years. The difference is that Java is really the
first commercially successful language/platform to support
distributed computing. From this success came the realiza-
tion that to truly bring distributed computing to the masses,
they would need help putting it all together.

The help first came in the form of the Enterprise JavaBean
application server. I’m unaware of the true origins of the
application server but I have worked with one for more than
10 years – GemStone for Smalltalk (GS/S). GS/S is generally
recognized as an awesome collection of technologies. It was
supported by an orthogonal transactional persistence mech-
anism that was instrumental in its support of distributed
computing. As good as the technology was, people had diffi-
culties understanding it. Though you could think of it as an
object database that relied on a proprietary Smalltalk imple-
mentation, it was really more than just that. It was just when

I started working for GemStone that I made the jump to
Java. GemStone had begun the process of porting their
Smalltalk technology to create an early version of a Java
application server. Again, GemStone was ahead of the curve
as they were working without a specification, so they
defined a distributed component model based on
JavaBeans. Not long after the initial implementations of GS/J
went to press, the EJB spec appeared and everyone started
the race to implement the latest features in the latest specifi-
cation. After 15 years in the business, the appearance of the
EJB specification provided GemStone with a means to
describe their technology.

I began my journey in a world that was as aware of the pos-
sibilities of Java as it was unaware of its absence. The journey
has been exciting as I’ve been able to work with a number of
world-class engineers who were implementing the latest
bleeding-edge technology in a market that was still trying to
figure out what it wanted. Yet, in all of that confusion, we have
been able to define and build a technology that is pretty solid.
It has let us mere mortals build systems that would have been
unthinkable only a few years ago. But in this ever-changing
game of cat and mouse, the cats (our users) continue to
adjust their expectations and demand even more complex
systems so we still have plenty of problems to solve. Having
said this, maybe there are hints to the solutions to these new
challenges somewhere in our collective past. Certainly, we
should take the time to look for them.

Kirk Pepperdine is the
chief technical officer at

Java Performance Tuning.com
and has been focused on
object technologies and
performance tuning for

the last 15 years. Kirk is a co-
author of Ant Developer’s

Handbook (Sams).

kirk@javaperformancetuning.com

Kirk Pepperdine
Java Enterprise Editor

Our Roots

D

JAVA ENTERPRISE VIEWPOINT

C
O

R
E

H
O

M
E

E
N

T
E

R
PR

IS
E

D
E

SK
TO

P

In all of that confusion, we have been able to define and
build a technology that is pretty solid” “

Optimize J2EE.
The J2EE revolution is here to increase performance, value, and lower IT costs.

It’s a solution from Mercury Interactive that makes your whole J2EE

applications ecosystem work right.

It’s the fastest way to find the toughest J2EE problems from the development to

the live applications. Even pinpoints root cause and the line of source code.

It’s about more than delivering J2EE applications. It’s about delivering applications

that work and yield real business value.

It’s the Business Technology Optimization revolution.

And Mercury is the only one bringing you a revolutionary solution for J2EE.

Download our free white paper, "Diagnosing J2EE Performance Problems
Throughout the Application Lifecycle,"

at www.mercuryinteractive.com/optimizej2ee
Get Optimized™.

© 2003 Mercury Interactive Corporation. Mercury Interactive, Get Optimized, and the Mercury Interactive logo are trademarks or registered trademarks of Mercury Interactive Corporation in the United States and/or select foreign countries.

12 February 2004 www.JavaDevelopersJournal.com

common approach to caching data in Web applications is
to use an HTTP session. A business use case that spans
multiple HTTP requests may create the need for caching
in a Web tier. Once business use–case processing is com-

pleted, this cached data needs to be removed. Failure to do this
may lead to memory leakage, which becomes noticeable when a
user HTTP session continues for hours.

The Solution
The following terminology is used in subsequent sections:

• A use case is a sequence of steps performed by a user toward
realization of a business requirement.

• A nested use case is the extension point from the base use case.
• The use case context represents the logical starting point of a

use case.
• The handler is a server-side component responsible for pro-

cessing HTTP requests.
• The cache element is an object, cached during use case

processing.
• The navigation path is the sequence of handlers invoked

when fulfilling a use case.

Let’s begin by considering a few basic rules.

Rule 1: Only one use case is active at any instance: A user cannot
process multiple use cases at a given instance.

Rule 2: A use case processing stage governs the cache element life cycle:
1. Start stage: New use case processing starts on completion or

termination of prior use case processing. Cache elements
that correspond to a prior use case are removed.

2. Intermediate stage: The user navigates to the next step or to a
prior step of the use case. Forward navigation adds new cache
elements; backward navigation may remove cache elements
on an as-needed basis.

3. End stage: On completion of the use case, all accumulated
cache elements are removed.

To implement this rule we need to provide an additional
parameter to identify the use case processing stage.

Rule 3: Handlers operate inside a use case context: User navigation
dynamically builds a cache hierarchy tree with the handler and
use case context as nodes and the cache element as a leaf. The
handler node could hold a successor handler, cache elements,
and a nested use case context. The use case context node holds a
start handler. The root of the tree is the use case context.

Rule 4: Handlers operate on cache elements: Handlers create, read,
and destroy cache elements.

Keeping these rules in mind, let’s address the stated problem.
We have conceptually built a cache hierarchy tree, which is the
key concept to addressing the problem.

Step 1: Each request will go through the cache garbage collector
At the start of a new use case, the cache garbage collector

removes all existing cache elements of the previous use case.
Figure 1 addresses the memory leakage problem. The intro-

duction of the cache hierarchy tree removes tight coupling
between handlers.

Step 2: Handlers navigate the cache hierarchy tree
A pointer is maintained to navigate the cache hierarchy tree.

It points to the most recently processed node in the use case
context. With the help of this pointer we can:
• Jump to a previous step
• Jump the nested use case context

During a jump operation all cache elements that are attached to
downstream handlers may be removed. It’s helpful in the following
business scenarios: backward navigation and use case termination.

Efficient memory handling at a granular level is achieved. At
the same time, the decoupled handlers make future enhance-
ments easier.

Solution Implementation
Cache Hierarchy Tree Design

The cache hierarchy tree is built using the GoF Composite pat-
tern (see Figure 2). The use case context and handlers are the
nodes; the cache element names are leaves; the actual cache ele-
ment instances reside in the HttpSession.

Cache Hierarchy Tree Management
The “UserAppStateContainer” object holds the cache hierarchy

tree. This container instance is stored in the user is HTTP session.
“UserAppStateManager” helps manage the cache hierarchy tree.

Conclusion
The cache hierarchy tree empowers HTTP session garbage col-

lection; however, this tree is also kept in the user HTTP session. So
in a clustered environment it also needs to be replicated.

HTTP Session Garbage Collector
Removing cached data

C
O

R
E

H
O

M
E

E
N

T
E

R
PR

IS
E

D
E

SK
TO

P

USE CASES

by Abhinasha Karana

A

Abhinasha Karana
is a technical specialist for

the systems integration
group at Infosys Technologies.

He has around six years of
experience in the information

technology field as a developer
and designer. His interests
are in EAI and distributed

computing.

abhinashak@infosys.com

Figure 1 HTTP request processing flow

www.x.com?handler="HandlerA"&UseCaseContext="pay"

Cache Hierarchy
Tree

HandlerA
Cache
Garbage
Collector

Figure 2 Cache hierarchy tree

Maximized

© 2003 Computer Associates International, Inc. (CA). All rights reserved.

AllFusion™ Life Cycle Management Software

Monitored
The right approach to application life cycle management
can transform your business.

The key to great development isn’t just great developers, it’s great management. That’s why we created AllFusion, a comprehensive

application life cycle management solution. AllFusion has unprecedented flexibility that allows your projects to change along with

the market. And that helps you do something a lot more important than just minimize aggravation. It lets you maximize productivity.

To learn how to improve your development process, or to get a white paper, go to ca.com/lifecycle.

infragistics.com/jsuiteJava COM .NET

Č

Č

download a trial version today!

Infragistics JSuite 7.0™™

Tune up Your Presentation Layer!

The Only Integrated Toolset for Presentation Layer Design
The Infragistics JSuite 7.0 is the only comprehensive
framework of presentation layer components you will
ever need for building visually superior front-end
interfaces for any Java application. Create robust, eye-
pleasing client- or server-side applications with the
sophistication and usability of today’s most recognized
commercial applications.

AWT JFC JavaBeans Server
JSuite 7.0
Enterprise Edition
includes AWT, JFC, JavaBeans & Server
product, subscription, as well
as guaranteed priority support
Č includes ALL Java source code $1495

JSuite 7.0
with annual subscription
includes AWT, JFC, JavaBeans & Server
a year's worth of updates,
upgrades and new products
Č includes ALL Java source code $995

JSuite 7.0
product only
includes AWT, JFC, JavaBeans & Server $795

Java Source Code is included in the JSuite 7.0
with Subscription or Enterprise Edition!

Version 7.0 includes ALL NEW client- &
server-side charting featuring ONE core
charting engine:

• Both client- & server-side charts feature the same rich
look-and-feel and object model.

• 2D/3D chart types - All major chart types: bar, stacked
bar, column, stacked column, line, area, pie, scatter,
bubble, heatmap, candle, hi/low, and open/close financial.

• All charts are fully customizable and extensible.

• Unique session-based security for protecting rendered
chart data, making any and all sensitive charts secure.

• Bound and unbound modes, robust aesthetic
enhancements, advanced legends, labels and tooltips,
client- & server-side events, and much, much more!

• All source code for Java components (Subscription and
Enterprise Editions)

• Licensed per developer (multiple installs for non-
concurrent use). No runtime or server deployment charges

• RAD customizers maximize productivity, minimize code

• Create robust server-based thin client applications for the
web with virtually the same rich user experience found in
thick client implementation

• Create user interfaces connected to Web Services using
XML and SOAP for seamless application integration

Download a free, full-featured trial version!
Order online, or contact us!

www.infragistics.com
800-231-8588

Data Models

Tables/Grids

Charting

Trees

Schedule

Explorer UI

Gantt

Editors

Other GUI Controls

Applet Wrappers

Server Classes

Copyright 1996-2003 Infragistics, Inc. All rights reserved. Infragistics, the Infragistics logo, JSuite are trademarks of Infragistics, Inc. JavaBeans is a trademark of Sun Microsystems.
All other trademarks or registered trademarks are the respective property of their owners.

™

Middleware is history”“
www.JavaDevelopersJournal.comFebruary 200416

of
Middleware
End

JDJ: Industry Perspective

End
Middleware

of

Executive Vice President, Software Group, Sun Microsystems
by Jonathan Schwartz

www.JavaDevelopersJournal.com

he marketplace tells you that

“middleware is everywhere” when

all along it should wise up and

recognize that “middleware is dead.” Because that’s

the new reality of enterprise computing today,

according to Sun’s software czar Jonathan Schwartz.

What’s more important: Running your business or
integrating middleware?

Should be an obvious answer, right?
Then why is the marketplace spending so much

energy wallowing in the history of “middleware is
everywhere”? Habit. A habit to which thousands of IT
professionals devote their lives. But integrating middle-
ware to build one-off business systems is about to per-
ish with the rise of shared services – the services you’d
like to build once, then execute on behalf of all your
business systems.

As an example, when’s the last time you hired
someone? Remember what it was like getting them
“badged” and into the company? You had to grant
them access to payroll, benefits, a desktop login, e-

mail, the CRM, and forecasting systems, then assign them
an office and a phone.

Most likely, your company built a unique provisioning
mechanism for each of the systems I just cited. One
for HR, one for the sales force, one for information
security, and yet another for physical security. And then
you likely created even more redundancy by building one
set for your intranet employees and another for your
Internet customer or supplier systems. That’s inefficient,
and in the world of Sarbanes-Oxley, a real problem – who
has access to what? And why did you build 17 different
systems?

Because it looked like a good idea at the time.
The same is true for most services that now make far

more sense in a shared environment, from portals (how
many does your company have?), to e-mail and applica-
tion services, down to clustering and Web servers. There’s
no real utility in having multiples of these services, as
Nicholas Carr would point out, where your implemen-
tation doesn’t generate a competitive advantage. How
you authenticate users and provision them with access
to your systems is an unlikely competitive advantage. So
why build a one-off solution instead of relying on an
integrated system?

Good question.
Our belief is that the vast majority of Web services are bet-

ter run as shared services. What’s the holdup, then? When we
looked into this a year ago, we found three challenges:

EXCLUSIVE...
T

h
e

T
h

e

TT
17February 2004

1. Roadmap sprawl
There’s no coordinating force causing all the required ele-

ments of shared services (from authentication to portals, Web
services to clustering) to coalesce around a common release,
interoperability, or support matrix. So you have no choice but
to build your own.

2. Pricing
Middleware pricing is anything but shared – per CPU,

per identity, per mailbox, per portal, per cluster node – pricing
opacity obscures the real savings in running shared services.
And if you can figure it out, you probably can’t afford them.

3. Licensing
The industry relies on “common access licenses,” often

tripling prices for services that touch the Internet – that’s
clearly an obstacle to shared services.

So here’s how we solved the problems:

1. The rise of Sun’s Java Enterprise System
Sun’s Java Enterprise System offers all the basic compo-

nents, from directory and identity management to Web ser-
vices, even e-mail and clustering. All in a single deliverable,
prequalified, tested, and supported on multiple platforms.

2. Pricing goes to a $100/employee subscription
Why buy software differently than how you buy office furni-

ture – by the employee? If your workforce decreases, you pay

less, and vice versa. The ultimate in predictable, transparent
pricing.

3. Licensing – infinite RTU
If the distinction between the intranet and extranet is dis-

appearing, so should the distinction in our licensing. So
$100/employee buys you the right to use (RTU) all these serv-
ices on all systems. At infinite scale – once you’ve paid for your
employees, your customers are free. Free. It’s your software.

The vendors who believe hardware is commoditizing suggest
the same forces won’t affect software. We believe it affects both.

And as the world moves to recognize the value of a shared
services infrastructure, it’s our belief that middleware is histo-
ry. Long live the system. The Java Enterprise System.

Author Bio
As executive vice president of Sun’s Software Group, Jonathan Schwartz

spearheads the company’s unified software business and focus and leads one of
the largest software organizations in the industry. His market-leading group is
responsible for the Solaris Operating System, defined by Sun as “the most secure,
most scalable, most reliable operating environment on the planet”; the Java
platform, which Schwartz and his team call “the gold standard for compatibility
and security from the cellphone to the desktop to the datacenter”; a complete
portfolio of highly integrated, highly affordable, interoperable, end-to-end
software for every environment; the N1 operator platform (“for dynamic and
utility computing”); developer tools; and Sun’s entire family of middleware and
software solutions. This essay was written exclusively for JDJ.

JDJ: Industry Perspective

www.JavaDevelopersJournal.comFebruary 200418

Integrating middleware

to build one-off business

systems is about to

perish with the rise

of shared services”

“

New Crystal Reports 10.
The best in business intelligence now offers the best in business reporting.
New Crystal Reports® 10 is a faster and simpler way for developers to integrate dynamic
data into applications and implement high-quality viewing, printing, and exporting. Learn
more about Crystal Reports 10 and Crystal Enterprise™ 10, and access technical and evaluation
resources at www.businessobjects.com/v10/047 or contact us directly at 1-800-877-2340.

99.9% of the world won’t find these
screen shots terribly exciting.
But if you’re in the other 0.1%,

yeehaw.
Visual Designer simplifies

data connectivity
Deliver diverse data formatting

options within your presentation layer

Access data natively, or via
ODBC, JDBC and OLE DB

Expedite .NET and
J2EE report integration
Design and integrate reports
from within popular IDEs

Flexible Java, .NET and COM SDKs support the
tight integration of report interactivity including:
group tree navigation, exporting, printing, and
drill down

{

Use Crystal Reports 10 with
your J2EE applications

New 100% Java reporting component. Deploy
reports across Unix, Linux and Windows

Extend Crystal Reports with Crystal Enterprise.
Get world-class web report publishing,

management, and scalability

}

{

20 February 2004 www.JavaDevelopersJournal.com

s a frequent visitor to J2ME and Bluetooth developer
forums, I’ve noticed that one of the most frequently
asked questions is “How do I get started with
Bluetooth?” Despite its introduction in 1998 and a

highly hyped year in 2001, Bluetooth application develop-
ment remains hideous and challenging for lots of developers.
Many experienced developers are looking for material that
goes beyond a basic introduction and covers various aspects
of real-life Bluetooth application development.

This article will take you to the next step of Bluetooth devel-
opment and look at a newly developed specification that can
assist Bluetooth developers in building applications rapidly. I’ll
discuss some important concepts of this specification and pro-
vide a walkthrough of a real Bluetooth application, BlueChat,
that will cover some important design and implementation ele-
ments of a typical Bluetooth application. For those readers who
have little or no experience with Bluetooth, the resources listed
at the end of this article provide additional information.

To compile and execute the BlueChat example application,
you need to obtain the J2ME Wireless Toolkit 1.0.4 and the
Rococo Impronto Simulator. Refer to the resources section for
the download location.

Bluetooth Concept
Bluetooth is one of the wireless connectivity options avail-

able for mobile application development. It is characterized
by a short range, low-power consumption; ad hoc network-
ing; and usage-oriented design. Because of these characteris-
tics, Bluetooth is often employed in consumer devices such as
mobile phones and personal digital assistants (PDA). Typical
usages of Bluetooth include answering voice calls using a
wireless headset, synchronizing data between a PDA and a
PC, and sending images from a camera phone to a PDA.

The functionality of Bluetooth is governed by a public and
royalty-free specification and defined by the Bluetooth
Special Interest Group. The Bluetooth specification defines
both hardware and software layers. Traditionally, Bluetooth
module manufacturers provide the necessary SDK to inter-
face with their modules. One of the complexities of Bluetooth
development is the fragmentation of these SDKs and APIs.

Vendor-specific SDKs force developers to adopt proprietary
APIs for their respective Bluetooth chip sets. Bluetooth appli-
cations built on top of these APIs are not portable across
devices and platforms. But isn’t Bluetooth a standardized
specification? The Bluetooth specification as defined by
Bluetooth SIG is a functional specification of the technology.
It describes how proper Bluetooth devices behave, and how
they interoperate with each other (via Profiles). It does not
describe how Bluetooth devices can be programmed nor how
applications exercise a Bluetooth device’s functions and uti-
lize communication channels.

The need for a standardized API arises in order to develop
Bluetooth applications in a platform-independent manner.

Java Bluetooth API (JSR-82)
The Java Community Process introduced the first stan-

dardized API specification for Bluetooth back in 2000. This
specification (JSR-82), Java API for Bluetooth Wireless
Technology (aka JABWT), establishes a common ground for
rapid Bluetooth application development. Developers are
now able to write Bluetooth applications independent of
hardware vendors. Most important, JABWT-compatible
applications are portable across various JABWT-equipped
devices.

The benefits of JABWT nevertheless come with a cost. The
Bluetooth specification is designed to cover a diverse range of
devices and usage scenarios. To complement this diversity the
scope of JABWT took the lowest common denominator
approach. Only the most commonly used profiles and func-
tions are included in JABWT. In particular, Generic Access
Profile, Service Discovery Profile, Serial Port Profile, Generic
Object Exchange Profile, and their respective protocols are
supported. These profiles allow JABWT applications to per-
form the following functionalities:
• Generic Access Profile: Provides the basic building blocks

of a Bluetooth application, such as local device, remote
device, Bluetooth address, and device discovery.

• Service Discovery Profile: Provides the ability to find avail-
able services to access remote functionalities.

• Serial Port Profile: Provides a stream-based connectivity
between Bluetooth applications.

• Generic Object Exchange Profile: Provides support for
OBEX protocol, which allows applications to exchange
simple objects such as business card data.

To simplify the programming model, two entities, the
Bluetooth Configuration Center (BCC) and the Service
Discovery Database (SDDB), are abstracted from the Java
API. BCC includes the capabilities that globally configure
the Bluetooth stack and prevent one application from
adversely affecting another, typically a native application
that exposes a user interface for users to parameterize the
device. Although BCC is transparent to Java applications, it
is important to realize that BCC has the ultimate authority
over the Bluetooth host and may affect the behavior of
your Bluetooth applications. SDDB is an abstract database
of service records, a collection of attributes that describe
your Bluetooth services. Java applications interact with
SDDB indirectly via the update and retrieval of service
records.

Design of a Bluetooth Application –
A Bluetooth Chat Room

To illustrate various aspect and design issues of a
Bluetooth application, we’ll develop a JABWT-based chat
room application, called BlueChat, for mobile devices that
must support the J2ME MIDP 1.0 profile. Users who have a

Go Wild Wirelessly
with Bluetooth and Java
Developing portable Bluetooth apps

C
O

R
E

H
O

M
E

E
N

T
E

R
PR

IS
E

D
E

SK
TO

P

MOBILITY

by Ben Hui

A

Ben Hui is a mobile
technology specialist who

develops software for PDAs
and mobile devices and
is keen on making J2ME

technology work in harmony
with daily life experiences.
He has been programming

with Java since its inception
and has recently become

addicted to consumer-
device technologies.

www.benhui.net.

contact@benhui.net

OptimalJ

THE POWER TO Develop,Transform, Reuse

Put your J2EETM application development into overdrive using Compuware OptimalJ. This powerful

model-driven, pattern-based enterprise development environment slashes the burden of repetitive

coding, and helps you build high-quality applications that are truly reusable, time and time again.

Don't waste time writing boring infrastructure

code. Start honing your skills now with

this groundbreaking JavaTM development tool.

®

The power is right here.

The leader in IT value.

Compuware

www.compuware.com

22 February 2004 www.JavaDevelopersJournal.com

MOBILITY
C

O
R

E
H

O
M

E
E

N
T

E
R

PR
IS

E
D

E
SK

TO
P

JABWT-capable device (such as the upcoming Nokia 6600
phone and Sony Ericsson P900) can use this application to
chat with their nearby friends in an IRC fashion. When
BlueChat launches, it searches and joins any existing chat
room within the Bluetooth effective range, or creates a new
chat room if it’s the first active BlueChat in that range. We
use the words chat room to represent a virtual chat room
that’s formed by a network of BlueChat applications. Users
can start messaging with each other within the same virtual
chat room when there’s more than one party connected to
each other. If one user sends a message over the air, all par-
ties of the chat room will receive the message. Users can
join and leave the chat room at anytime.

For this article we make some assumptions to simplify the
application in order to focus on Bluetooth implementation
topics:
• There’s only one chat room that exists within effective

Bluetooth range.
• There is no security imposed when joining a chat room.
• Users run one instance of BlueChat on a device at any

given time.

Before we dig into the source code, let’s look at some of the
Bluetooth application design issues. JABWT does a good job
of providing a familiar API to J2ME developers for accessing
Bluetooth facilities. JABWT is integrated with the J2ME
Generic Connection Framework. As a result, Bluetooth net-
work programming is very similar to a stream-based connec-
tion model.

Like many other network protocols, the Bluetooth con-
nection model employs a client/server architecture. Our
BlueChat application, on the other hand, operates in a
peer-to-peer manner. Each running instance of BlueChat
(or a node) can serve as a client and a server at the same
time. It behaves as a client when BlueChat starts up; it
searches and connects to existing running BlueChat
devices. Once connected, it makes itself available for future
clients to connect to. In such cases, it serves as a server for
future client connections.

Figure 1 represents the network relationship between
three BlueChat applications. To logically represent an
active BlueChat node, we use the concept of endpoint to
encapsulate all the connectivity attributes of a node. An
endpoint represents a unique message delivery destina-
tion and source regardless of whether it is a server or a
client.

A Bluetooth connection differs from a regular socket
connection by its unique device and service discovery
processes. Bluetooth applications typically start the device
discovery process to identify connectable devices, which is
followed by a service discovery process to obtain a refer-
ence (URL) to suitable services. To hide these complexities
from the Graphical User Interface (GUI) elements, a net-
work layer is introduced to serve as a façade to the
Bluetooth API. This design is comparable to the Model-
Viewer-Controller model where the Viewer component is
decoupled from the Model component. The GUI can
access Bluetooth connectivity via a simplified interface,
which does all the discovery and connection establishment
behind the scenes. This network layer also provides the
functionality to send messages to and receive messages
from other endpoints. A call back interface is in place to
report any network activity back to the GUI. Figure 2 illus-
trates the relationship between various layers and compo-
nents in BlueChat.

The communication channel between each connected
BlueChat endpoint is a structured data stream connection.
We put together a simple protocol to coordinate the activity
between each endpoint. This protocol includes the following
features:
• Initial handshake: Each point must handshake with each

other when the connection is first established. This
ensures that the connecting device is a BlueChat node
rather than a mistakenly connected application. During
the handshake, we also exchange the screen names of the
users (see Figure 3).

• Delivery of text message: Each sent text message is deliv-
ered to all endpoints connected to the BlueChat network.

Figure 2 Network layer

Midlet GUI

Calling network functions

BTListener

Bluetooth NetLayer

BTListener Call Backs

JABWT API

Reader Sender

Outgoing data
Incoming data

Figure 1 BlueChat topology

BlueChat
Endpoint

BlueChat
Endpoint

BlueChat
Endpoint

Figure 3 Establish two endpoints

New EndPoint Existing EndPoint

Register local server()

Device and service discovery()

Matching device and service()

Connect to remote service()

Establish active EndPoint()

send SIGNAL_HANDSHAKE()

return SIGNAL_HANDSHAKE ACK()

Exchange SIGNAL_MESSAGE()

Establish active EndPoint()

emit EVENT_JOIN()

With just a click, Jtest reads and analyzes code — quickly creating
harnesses, stubs and test inputs — and tests without user
intervention. Jtest also enables you to automate regression testing
and static analysis. For loyal JUnit users, Jtest is designed to fully
support existing test cases and automate the creation of new JUnit-
compatible test cases.

Learn how Jtest can enhance JUnit capabilities...
Download a free eval copy of Jtest along with our informative new
white paper entitled "Using Jtest With JUnit."

A part of Parasoft Automated
Error Prevention (AEP) Solutions and Services

Parasoft Jtest is the first and only
automated unit testing tool for Java™ development.

Platforms:
Linux
Solaris
Windows 2000/XP

For Downloads go to www.parasoft.com/jdj_02. Or call 888-305-0041.
Copyright ©2003 Parasoft Corporation. All rights reserved. All Parasoft product names are trademarks or registered trademarks
of Parasoft Corporation in the United States and other countries. All other marks are the property of their respective owners.

Automate unit test case generation
for JUnit and Java with Parasoft Jtest.

(It’s as easy as 1-2-3.)

•

We make software work.TM

resultsclickpoint

Parasoft Jtest 5.0® ®

Features:
• Fully integrated into JUnit & Eclipse
• Quick Fix enabled finds & fixes errors fast
• Intuitively designed GUI

New for Java development...

TM

24 February 2004 www.JavaDevelopersJournal.com

• Termination handshake: If the user quits the chat room
gracefully, a termination token is sent to all the other end-
points to indicate its intention. We can clean up the neces-
sary network and runtime resources associated with the
leaving endpoint upon receiving this token. However, if the
user walks away from effective range and becomes inac-
cessible, a termination token is not sent. Other active end-
points will discover the leaving party is inaccessible when
the connections are lost, and they will clean up the
resources (see Figure 4).

Implementation Consideration
The NetLayer class, which implements the BlueChat net-

working layer, does most of the Bluetooth-related work and
provides the following functionality:
• Initializes the Bluetooth stack
• Registers BlueChat services to the Bluetooth device
• Searches for nearby devices
• Searches for BlueChat services on nearby devices
• Establishes endpoint connectivity for found BlueChat

services
• Manages the life cycle of all endpoints

The Bluetooth stack can be initialized by calling LocalDevice.
getLocalDevice(). LocalDevice is a singleton that uniquely rep-
resents the underlying Bluetooth device implementation. You
can use the LocalDevice instance to gain access to other
Bluetooth features including:
• Discovery agent (via getDiscoveryAgent())
• Bluetooth physical network address (via getBluetoothAddress())
• SDDB (via getRecord() and updateRecord())

The BlueChat NetLayer’s initial work is to create and register a
BlueChat service to a local device. A Bluetooth service is an entry
point for other Bluetooth clients to access available functionali-
ties. Since each BlueChat endpoint can serve as a server, it must
register its service in order to make this server available to other
BlueChat clients. JABWT utilizes the MIDP Generic Connection
Framework to instantiate a server connection. A BlueChat appli-
cation needs to instantiate a Serial Port Profile connection, basi-
cally a stream-based connection that allows two BlueChat appli-
cations to exchange data using Java input and output streams. A
BlueChat server connection is created using the code in Listing 1.

After a server connection is created, the service is not yet
available to external clients (it is not discoverable). What has
happened is that JABWT created a corresponding ServiceRecord
for this service. A ServiceRecord is a collection of attributes that
describes our service, and these attributes are searchable by
clients. We can use localDevice.getRecord(server) to retrieve the
newly created ServiceRecord. You may notice that the Service-
Record is not empty at this point; it is already populated with
some default values that are assigned by the JABWT implemen-
tation based on the connection string and the implementation
configuration when we perform Connector.open().

The server.acceptAndOpen() method notifies the Bluetooth
implementation that the application is ready to accept incoming
connections and make the service available. This also instructs
the underlying implementation to store the ServiceRecord object
in the SDDB, which occurs when server.acceptAndOpen() is first
invoked. Notice that only the attributes stored in the SDDB can
be seen and queried by other Bluetooth clients. Any subsequent
change to the ServiceRecord must be reflected in the SDDB by
using localDevice.updateRecord().

MOBILITY
C

O
R

E
H

O
M

E
E

N
T

E
R

PR
IS

E
D

E
SK

TO
P

Figure 4 Terminate two endpoints

Leaving EndPoint Staying EndPoint

User exits()

Shutdown local server()

send SIGNAL_TERMINATE()

return SIGNAL_TERMINATE_ACK()

Exit Application()

emit EVENT_LEAVE()

Clean up leaving EndPoint()

Listing 1: Creating a server connection

// BlueChat specific service UUID
private final static UUID uuid = new UUID(0x6600BC);

…

StreamConnectionNotifier server = null;

// Create a server connection object, using a
// Serial Port Profile URL syntax and our specific

UUID (0x6600BC)
// and set the service name to BlueChatApp
server = (StreamConnectionNotifier)Connector.open(

"btspp://localhost:" + uuid.toString()
+";name=BlueChatApp");

// Retrieve the service record template
ServiceRecord rec = localDevice.getRecord(server);

// set ServiceAvailability (0x0008) attribute to
indicate our service is available

// 0xFF indicate fully available status
// This operation is optional
rec.setAttributeValue(0x0008, new DataElement(

DataElement.U_INT_1, 0xFF));
// Print the service record, which already contains
// some default values
Util.printServiceRecord(rec);
// Set the Major Service Classes flag in Bluetooth

stack.
// We choose Object Transfer Service
rec.setDeviceServiceClasses(

BluetoothConstants.SERVICE_OBJECT_TRANSFER);

Listing 2: Start discovering near-by devices

// initialize the JABWT stack
LocalDevice device = LocalDevice.getLocalDevice(); //

obtain reference to singleton
device.setDiscoverable(DiscoveryAgent.LIAC); // set

Discover mode to LIAC
DiscoveryAgent agent = device.getDiscoveryAgent(); //

obtain reference to singleton

// although JSR-82 provides the ability to lookup
// cached and preknown devices, we intentionally by-

pass
// them and go to discovery mode directly.
// this allow us to retrieve the latest active

BlueChat parties
//

// Listener object implements DiscoveryListener
agent.startInquiry(DiscoveryAgent.LIAC, new

Listener());

Listing 3: Filtering relevant devices into pending EndPoint list

/**
* A device is discovered.
* Create a EndPoint for the device discovered and put

it on the pending list.
* A service search will happen when all the qualifying

devices are discovered.
*/

public void deviceDiscovered(RemoteDevice remoteDevice,
DeviceClass deviceClass)

26 February 2004 www.JavaDevelopersJournal.com

Now our BlueChat application is ready to accept a connec-
tion. But what if your friends are already chatting prior to the
start of your BlueChat? If there is an existing chat room available,
BlueChat should join the existing network by searching for other
BlueChat services on each individual device and connecting to
their services. Three steps must be taken to perform this action.
1. Search for an available device.
2. For each available device, search for available and match-

ing services.
3. For each available and matching service, connect to the

service and perform the initial handshake.

DiscoveryAgent, another singleton in JABWT, can help us
find other devices and services. Listing 2 shows the steps to
search for devices.

There are two other options for retrieving connectable
devices, a cached devices list and a preknown devices list.
Cached devices are remote devices that have been discov-
ered in a previous inquiry. Preknown are remote devices
that are preconfigured in BCC. In our example, we choose
to ignore both cached and preknown devices. We want to
retrieve the most up-to-date list of active BlueChat devices
at the moment BlueChat is launched. Therefore, our
BlueChat application always initiates a new search for all
surrounding devices.

Devices can be searchable in two modes, General Inquiry
Access Code (GIAC) and Limited Inquiry Access Code (LIAC).
When a device is set to GIAC, it basically means “I want to be
discovered all the time.” Devices that provide public and per-

manent services fall into this category. Printers and fax
machines are examples of GIAC devices. On the other hand,
LIAC discovery mode means “I want to be discovered for a
short period of time, as requested by my user.” Devices that
provide on-demand connectivity will fall into this category.
Examples are multiple player game consoles, mobile
modems, and our BlueChat program.

The device discovery and service discovery processes are
performed in an asynchronous manner. A Bluetooth appli-
cation must provide a callback object for the JABWT imple-
mentation to notify when devices or services are found.
This callback object (the NetLayer$Listener inner class
object in our case) implements the DiscoveryListener inter-
face. When a device is found, the deviceDiscovered()
method is invoked. We do some basic filtering (using the
Major Service Class flag) to narrow down the candidate
devices for our BlueChat application and ignore other unre-
lated devices (see Listing 3).

When all candidate devices are discovered, the device
search is completed and the searchCompleted() method is
invoked. We initiate the service discovery process using
DiscoveryAgent .searchServices(). This is where the
ServiceRecord attributes become useful. ServiceRecord is
not only a description of the services, but also a query of
constraints during service discovery. The second parame-
ter of searchServices() allows us to specify which attrib-
utes and values the services must have in order for us to
discover them. We can provide the UUID for the service
that we registered earlier and it narrows down the exact

MOBILITY
C

O
R

E
H

O
M

E
E

N
T

E
R

PR
IS

E
D

E
SK

TO
P

{

// only device of SERVICE_OBJECT_TRANSFER service
// will be considered as candidate device

// because in our BlueChat service, we explicitly set
the service class to

// SERVICE_OBJECT_TRANSFER. see the run() method
if ((deviceClass.getServiceClasses() &

BluetoothConstants.SERVICE_OBJECT_TRANSFER) != 0)
{

try
{

// create a inactive EndPoint and put it on the
pending list

EndPoint endpt = new EndPoint(NetLayer.this,
remoteDevice, null);

pendingEndPoints.addElement(endpt);

} catch (Exception e)
{
}

}
}

Listing 4: Start discovering BlueChat services

/**
* device discovery completed.
* After device inquery completed, we start to search

for BlueChat services.
* We loop through all the pending EndPoints and

request agent.searchServices
* on each of the remote device.
*/

public void inquiryCompleted(int transId)
{

//
// for each EndPoint, we search for BlueChat
// services, i.e. ServiceClassIDList (0x0001) = uuid

(0x6600BC)
for (int i = 0; i < pendingEndPoints.size(); i++)
{

EndPoint endpt = (EndPoint) endPoints.elementAt(i);

//
// searchServices return a transaction id, which

we will used to
// identify which remote device the service is

found in our callback
// listener (class Listener)
endpt.transId = agent.searchServices(

new int[] {0x0001}, // attribute ID for ServiceClassIDList
new

UUID[] {uuid} // BlueChat service UUID

endpt.remoteDev,
new

Listener());
}

}

Listing 5: Establishing connection to discovered BlueChat services

/**
* a service is discovered from a remote device.
* when a BlueChat service is discovered, we establish

a connection to
* this service. This signal joining the existing vir-

tual chat room.
*/

public void servicesDiscovered(int transId,
ServiceRecord[] svcRec)

{

if (svcRec.length > 0)
{

// We make an assumption that the first service
is BlueChat. In fact, only one

// service record will be found on each device.
// Note: we know the found service is BlueChat

service because we search on
// specific UUID, and this UUID is unique to us
String url = svcRec[0].getConnectionURL(

ServiceRecord.NOAUTHENTICATE_NOENCRYPT, false);
StreamConnection con =

(StreamConnection)Connector.open(url);

// Establish active EndPoint
// and start sending SIGNAL_HANDSHAKE
….

}
}

27February 2004www.JavaDevelopersJournal.com

matching candidate services on a remote device. This mechanism not only
improves the performance of the discovery process, but also reduces the possibili-
ty of conflict. Once the desired service (BlueChat service) is found, we can retrieve
the corresponding connection URL and establish the physical connection (see
Listing 4).

To further validate that the connected service is indeed a BlueChat service, we imme-
diately perform a handshake with the other party by sending a handshake signal (SIG-
NAL_HANDSHAKE) and exchanging the user screen name. Receiving parties must
respond with an acknowledgment (SIGNAL_HANDSHAKE_ACK) to confirm the request
(see Listing 5).

To logically represent all the parties in the chat room, we introduce class
EndPoint. From the application-level perspective, an endpoint encapsulates infor-
mation for each actively connected BlueChat user and device. BlueChat uses
EndPoint to identify which user to send a message to, and from which user a mes-
sage is received. This abstraction allows us to hide the JABWT complexity from the
GUI application. Endpoints are created when a connection is established between
two BlueChat devices. Once created, we attach a reading thread and sending thread
to the endpoint to manage the traffic between two endpoints. From this point on,
two endpoints exchange user-entered messages (using SIGNAL_MESSAGE) until a
termination signal is received. Implementation of this protocol can be found in the
Reader and Sender classes.

When a user exits BlueChat, the application sends the last message – a termina-
tion token (SIGNAL_TERMINATE) – to all connected parties. This token signals
that the endpoint is no longer active. All receiving parties must return an
acknowledgment (SIGNAL_TERMINATE_ACK) and remove the leaving endpoint
from the active endpoint list. An endpoint can also be removed when the connec-
tivity is dropped, which suggests the user has left the chat room without an
explicit exit command (possibly due to a user’s walking away from the Bluetooth
effective range).

Our GUI, based on the MIDP LCDUI API, provides a simple interface to send and
receive messages. All received messages from all connected users are displayed
sequentially on the screen, which creates a virtual chat room environment. When
there are more messages to display than can fit onto one screen, older messages
will roll off the upper edge. In this example application, users are not able to scroll
back to see the past messages. Pressing the “Write” command takes users to a mes-
sage-editing mode. Pressing the “Send” command sends the currently entered mes-
sage to the chat room; all other connected users are able to see the message. To quit
the chat room, pressing the “Exit” command sends a termination token to all other
parties.

Conclusion
Java/J2ME is the first platform to introduce a standard Bluetooth API, the Java API

for Wireless Bluetooth (JAWBT). With the emergence of some JAWBT-enabled
devices, developing portable Bluetooth applications becomes a reality for J2ME
developers. In this article, we developed a Bluetooth application that allows us to
understand the essence of Bluetooth development from design to implementation.
Thanks to the J2ME-friendly API, experienced J2ME developers will find Bluetooth
programming a familiar exercise. Device and service discoveries are important addi-
tions to the Bluetooth programming model, and should be fully understood by all
Bluetooth developers.

One aspect of Bluetooth development not touched upon in this article is
Bluetooth security. Bluetooth provides basic security features for authenticating
and authorizing access to devices and services. I recommend reading Chapter 8 of
the JABWT specification for details on how to build a secure Bluetooth
application.

Resources
• Java APIs for Bluetooth Wireless Technology (JSR-82) Specification: http://

jcp.org/en/jsr/detail?id=82
• Benhui.net Bluetooth developer resources: www.benhui.net/bluetooth
• JABWT discussion group at Yahoo: http://groups.yahoo.com/group/JABWT
• The official Bluetooth member site: www.bluetooth.org/
• Rococo Simulator Developers’ Corner: www.rococosoft .com/devcorner/ index.html
• PaloWireless Bluetooth Resources Center: www.palowireless.com/info tooth/know-

base.asp
• Sun J2ME Wireless Toolkit: http://java.sun.com/ products/j2mewtoolkit/

28 February 2004 www.JavaDevelopersJournal.com

ith the introduction of the EJB 2.0 specification,

the classic composite entity bean design

pattern became outdated overnight. In this

article, I present a new pattern that can serve as a proper

replacement. This pattern, called Delegation-Managed

Persistence bean (DMP bean), allows developers to represent

objects that span multiple database tables. DMP beans provide

a better solution than the original Composite EJB pattern

without making you roll your own persistence mechanism.

Let’s start with the basics. Why are composite entity
beans required, anyway? The problem is that in many cases
(depending on your application server and database),
beans with container-managed persistence (CMP entity
beans) can span only a single database table. However, in
many enterprise databases, a single conceptual object is
stored in numerous independent tables. The standard prac-
tice for solving this, in the days of EJB 1.x, was using bean-
managed persistence (BMP entity beans). With BMP beans,
the developer provides his or her own implementation for
storing the bean to, and loading it from, the persistent stor-
age (namely the database). This is a tiresome, repetitive,
and error-prone job, and it often sacrifices portability for
the sake of performance. Portability, for example, could be
lost if nonstandard SQL statements (or even stored proce-
dures) are used. The old composite entity bean pattern was
basically just a bean that knew how to load itself from sev-
eral tables using as many JDBC queries as needed, and like-
wise knew how to store itself to these tables, again using
JDBC. This allowed developers to bypass the CMP limit of
one table per bean, while providing a proper object-orient-
ed representation of the notion represented by the bean.

A simple example would be the notion of client in an
enterprise application, where information about each client
is stored in several distinct tables – one table contains con-
tact information, another contains the client’s credit status,
and so on. From an object-oriented point of view, we’re
interested in a single Client class that provides access to all
the information stored in all the individual tables.

With the introduction of the EJB 2.0 standard, the com-
mon solution to such problems became using container-
managed relationships (CMRs). A CMR allows a CMP entity
bean to maintain a “relationship” to other CMP beans as
long as these relationships are represented in the underlying
database as foreign keys. This allows you to define fine-
grained entity objects, rather than coarse-grained composite
beans. The main problem with fine-grained objects in EJB
1.x was the price of remote method invocations. But now
that entity beans are strongly encouraged to use the new
local interface feature, this becomes a nonissue. Application
clients access session beans, following the Session Façade
design pattern, and these session beans access the entity
beans using their local home and component interfaces.

This sounds like a good solution, but it suffers from two
serious drawbacks. First, as noted earlier, the use of CMRs
limits the usability of this solution to those composite objects
that, in their database representation, use foreign keys. While
this is indeed common, it is not always the case. The second
problem is more bothersome: the fine-grained entities pro-
vide an accurate depiction of the database tables, rather than
a high-level, object-oriented view of the concepts with which
we deal.

True, the application clients do not deal with these low-
level objects, but rather with high-level services offered by
the session beans; but this is simply a shift of focus. The ses-
sion beans now serve as clients to the entity beans. These
session beans often contain key parts of the application logic
– and it’s expressed using a low-level view of the object
model. This is unsatisfactory, and in fact contradictory to the
original notion of entity EJBs as a high-level object model for
the application data.

The original Composite Entity bean pattern solved this
problem by providing a high-level view of the data, but at a
great price, namely the tiresome and error-prone work
required to create these beans. So allow me to present the
new Delegation-Managed Persistence (DMP) bean pattern,
which provides the same functionality and high-level view as
composite entity beans do, while being easy to create and
maintain, and taking full advantage of container-managed
persistence.

The new pattern will be described here using the simple
case of a composite bean Item, which is stored across two
database tables: ITEM_DATA_1 and ITEM_DATA_2. We’ll
assume that each Item occupies one row in each of these two
tables. Naturally, the pattern is applicable to a much wider
range of cases.

C
O

R
E

H
O

M
E

E
N

T
E

R
PR

IS
E

D
E

SK
TO

P

by Tal Cohen

W

PATTERNS

Tal Cohen is a consultant
specializing in J2EE and

related technologies.
Until recently, he worked

as a researcher
in IBM’s Haifa
Research Labs.

tal@forum2.org

A composite entity bean for a new generation
A composite entity bean for a new generation

Get a JViews Info Kit – Learn more, test drive an Eval.
Go to: jviews-info-kit.ilog.com or Call: 1-800-for-ILOG

Features, Performance and Control

© 2003 ILOG, INC. All rights reserved. ILOG and the ILOG logotype are registered trademarks, and JViews is a
trademark of ILOG. All other brand, product, and company names are trademarks of their respective owners.

Discover the ILOG JViews Graphics Components
You’re developing a sophisticated user interface for a desktop, applet or
servlet application – it needs to provide displays that go far beyond what
Swing and HTML offer. How can you be sure it will have the features,
performance, customization and scalability to enable your end-users to
make better more informed decisions, faster?

With ILOG JViews, you get comprehensive graphical libraries & tools,
resources, and maintenance services so you can focus on the
implementation, confidently completing your application in less time and
at less cost.

Quickly and easily build:
 Gantt and resource displays
 Graph layouts, diagrams, workflows
 Geographic map displays
 Realtime data charts
 Custom monitoring and control screens
 Network and equipment management screens

Get the
 complete picture
Get the
 complete picture

30 February 2004 www.JavaDevelopersJournal.com

We begin by defining two CMP entity beans, ItemData1
and ItemData2, over the two database tables. These are
the DMP bean’s underlying fine-grained entities, and we’ll
refer to them as Item’s component beans.

Next we define the Item class as a BMP entity bean.
Don’t worry, while defined as a BMP bean, our DMP
bean will not really have to manage its own persistence
issues.

In the bean class, we define a field for each of the compo-
nent beans: these fields are the component bean references
and Item has two such fields. We also define the component
key references as one additional field per component bean;
the type of these fields is the type of each component bean’s
primary key class.

Again for the sake of simplicity, we will assume that both
ItemData1 and ItemData2 use java.lang.Integer for their pri-
mary key classes. So Item’s bean class definition begins like
this:

public class ItemBean implements EntityBean {

// Component bean references:

private ItemData1Local itemData1;

private ItemData2Local itemData2;

// Component key references:

private Integer itemData1Key;

private Integer itemData2Key;

Note that, true to the spirit of EJB 2.0, we access the
underlying fine-grained entities via their local component
interfaces. As you can probably guess, the component key
references are maintained so we can lazily load the beans on a
per-need basis. Two private methods, getItemData1() and
getItemData2(), will be used internally to access the
component bean references. The pseudo-code for the first
of these methods would be:

private ItemData1Local getItemData1() {

if (itemData1 == null) {

// find local home, probably using a home factory

ItemData1LocalHome home = ...;

itemData1 = home.findByPrimaryKey(itemData1Key);

}

return itemData1;

}

In itself, Item’s bean class does not contain any fields for
representing bean attributes. Any getter or setter method
for loading or changing attribute values is delegated to the
underlying component beans via the component references,
like this:

public getSomeAttribute() {

return getItemData1().getSomeAttribute();

}

Like attributes, any business operations defined in the
component beans can also be made available in the higher-
level DMP bean using delegation. Yet we can also provide
new, more complex features that involve accessing several
attributes or several business methods from one or more of
the component beans. We are, in effect, providing a high-
level view of the single business notion stored across multi-
ple database tables.

The Primary Key Class
The primary key for a DMP should be a composite key: a

simple Java class that includes (as fields) the primary keys
for every component bean class. In our example, the Item-
Key class would have two fields of type Integer, one for Item-
Data1’s key and the other for ItemData2’s. All normal pri-
mary key rules apply here – make sure the class is serializ-
able, has proper equals() and hashCode() methods, and so
forth. Getters and setters for the internal keys are also in
order.

Loading and Storing DMPs
In most BMPs, the key life-cycle methods – ejbLoad()

and ejbStore() – are complex beasts, accessing one or
more tables in the database directly by means of JDBC.
Surprisingly, in DMP beans, ejbStore() is completely empty,
while ejbLoad() is extremely simple and involves no manual
database access.

No implementation is required for ejbStore() since any
update is delegated to the component CMPs, which by their
very nature allow the container to manage their persistence
needs.

As for ejbLoad(), in this method the bean obtains its com-
posite primary key from its entity context object and checks if
any of the internal keys is different from the privately main-
tained component key references. If a component’s key was
changed, we must store the new value, and we can no longer
assume that the local reference to that object is valid. To inval-
idate the maintained reference, we simply nullify it, and it will
be loaded again when needed due to the lazy evaluation
mechanism detailed earlier. So in our example, ejbLoad()
would look like Listing 1.

While technically a BMP, the composite bean does not man-
age its own persistence: it indirectly delegates it to the contain-
er. This is why it was named “Delegation-Managed Persistence
bean” or “DMP bean” in the first place.

Passivation and Activation of DMP Beans
No special actions are required when DMP beans are passi-

vated or activated. Still, it could help the container better man-
age its resources if the component references and component
key references are all nullified in ejbPassivate().

Creating, Finding, and Removing DMP Beans
Perhaps the most sensitive part of this pattern is the

implementation of the ejbCreate...() and ejbFind...() life-
cycle methods. The last remaining life-cycle method,
ejbRemove(), is rather simple to implement: just remove
each of the component CMPs in turn. Make sure ejb-
Remove() has the REQUIRES transaction attribute, so if
the removal of any of the component beans fails, no
removal will take place.

Each ejbFind...() method should return the composite pri-
mary key type. This is basically done by finding each of the rel-
evant component CMPs (via whatever finder methods they
provide in their own local home interfaces, and possibly using
CMRs between these CMPs), and then composing the required
primary key from its components (the primary keys of the
component CMPs).

Slightly more complex is the case of finders that return
collections. While it is possible to retrieve the relevant
collections of composing keys, and then iterate over them
in order to create a new collection of composite keys, this
could be highly ineffective. One solution is to create a lazy
collection mechanism that keeps the collections of compos-
ing keys, and delves into them only when an iterator is

PATTERNS
C

O
R

E
H

O
M

E
E

N
T

E
R

PR
IS

E
D

E
SK

TO
P

31February 2004www.JavaDevelopersJournal.com

used (a lazy collection). Bear in mind, however, that
(depending on your application server software) collec-
tions returned by local home interfaces of CMP beans
are often lazy collections themselves, and are invalidated
as soon as the transaction that created them is over. In
such cases, there is no option other than to create the
whole collection immediately inside the DMP bean’s
finder method.

But DMP beans can do more than rely on the finder
methods provided by their composing beans. The finder
methods are one place where it does make sense to use
JDBC directly in DMP beans. Using raw SQL, you can
create finders that are too complex, ineffective, or down-
right impossible to implement using EJB QL. Thus, if your
high-level business notion, which spans multiple database
tables, suggests high-level search criteria that cannot be
expressed by simple searches on individual tables, you can
make these searches available without manually iterating
over collections of fine-grained objects.

Finally, as for ejbCreate...() methods, these should
create the relevant component CMPs (using their own
create...() methods from the local home interface), and
maintain the resulting local references in the DMP bean’s
fields. Again, as with ejbRemove(), the entire creation
process should normally be enclosed within a single data-
base transaction.

Conclusion
The pattern presented here allows developers to easily

create a high-level object-oriented view of complex busi-
ness objects, which cannot be represented using CMP

entity beans due to mapping limitations. These high-
level objects can then be used by their clients (normally
session beans that would access them via a local inter-
face), simplifying the client code since it no longer has
to be aware of the internal structure of these potentially
complex objects. While overcoming the limitations
of CMP entities, Delegation-Managed Persistence Beans
do not necessitate the creation of complex persistence
code, since they take full (if indirect) advantage of the
automated persistence services offered by the
container.

Listing 1

public void ejbLoad() {

ItemKey myKey =

(ItemKey) getEntityContext().getPrimaryKey();

Integer newKey1 = myKey.getData1Key();

Integer newKey2 = myKey.getData2Key();

if (!(itemData1Key.equals(newKey1))) {

itemData1 = null;

itemData1Key = newKey1;

}

if (!(itemData2Key.equals(newKey2))) {

itemData2 = null;

itemData2Key = newKey2;

}

}

32 February 2004 www.JavaDevelopersJournal.com

’m a firm believer in seasons of work for a specific job. The
season of writing for me is coming to a nice close – this is
my last editorial for JDJ (though I still have reviews that I
have to get on with). It’s been fun watching the Java world

open up before me during the working day, blogging some-
thing, and then enjoying the feedback. I’ve enjoyed the feed-
back, the e-mails, and even the criticisms (thanks JP!). It’s from
these exchanges that I learn and learn some more. There’s only
one mistake and that’s not learning from your mistakes.

There have been days when I look at all the work I’ve done
and wonder if any of it was worth it. In the end, no work is
wasted, just reused, relearned, and refactored into something
better and more robust. This is the ever-continuing journey
of the software developer: being a craftsman and getting a
feel for crafting software. It’s a discipline and it takes time to
perfect. For me, personally, I don’t want to be the Java
celebrity; I want to be a Java craftsman. Even if it’s just an
interface file, I want it to be an interface of quality. Now the
suffering for quality is usually not apparent to others; it’s
your journey so make of the situation what you will.

For me this journey has been fun, painful, and humbling.
The same goes for the craftsman in me. Don’t be afraid to put
your hand up and say you don’t know something. I’ve done it
many times. There are 23,000+ methods in the core Java API.
Do you expect me to know them all? No, that’s why the API
documents exist. It’s a journey that’s supposed to be fun, as
well as painful once in a while. The light in the distance is just
waiting for you to run toward it and learn something new.
This is what makes Java such an interesting journey for me.

As a musician it took a long time for me to accept that all
those hours of practice, bleeding fingers, and painful cramps
in my hands were for just one moment in April 2001. That
night the heavens opened and the golden trumpets sounded,
and it was like gold pouring in from above. All I was doing was
playing guitar and singing, but it felt as if everything had led
up to that moment, a moment I will never forget. I’m waiting
for that Java moment. When the heavens will open again, all
this work, learning and coding, will be used in something that
will remain in my memory forever. No one can steal these
moments away from you; hold onto them. It’s fun. Nothing
ever happens by accident. I often questioned Alan Williamson
why he wanted me to be J2SE editor and he simply said,
“There was just something.” I trust these moments of oppor-
tunity when crossroads appear. They have to be embraced and
followed, as you don’t know what is behind that door.

Sometimes people need a change in direction. Not so long
ago I wrote about handing in my notice with no job to go to.
I’m now about to start a new position that I’m getting really
excited about. In fact, it feels like everything I have been
learning will be poured out in this new position. If the trum-
pets sound, I’ll let you know.

If what you are reading sounds like a load of waffle, you’re
entitled to your opinion. Once I was involved in blogging,
both reading and writing. I’ve backed off a lot now. The
main reason has to do with the personality of a blogger. Lots
of them hide behind their blogs, using them as a smoke-
screen. Those who have read Bileblog know to take it with a
pinch of salt (though I respect what Hani says some of the
time). Other blogs have just turned into a bitching session.
It’s one that I don’t enter into. Over the past year I’ve
become more guarded. I’m in a position where my words
could be taken and misrepresented, and these positions
cannot be abused. Just because you are writing a blog does-
n’t mean that your professionalism should be left at the door
along with your shoes. Personality is a dangerous thing and

people’s personalities can rub off on you very quickly
indeed. I’ve become really picky about who I hang around
with. I’ve given reading blogs a rest (with the exception of a
few) and am concentrating on what I should have been con-
centrating on, coding in Java.

So, brothers and sisters who program Java, be true to your-
selves. Code to a quality you’d expect to see from others. Be
on hand to help. In Software Craftsmanship by Peter
McBreen, he focuses heavily on the role of journeyman
developers who train the apprentices and the masters who
train the journeymen. Build your network of contacts. I use
LinkedIn a lot and it’s very helpful. At the end of the day you
are only as good as the code you write.

Last, I cannot stress the importance of your own personal
development. Learning is a constant process. Whether you
do J2EE or J2ME, there is still time to delve into the core API
and cover areas that you may not normally cover. For me it’s
been Swing and AWT. I’m a server-side developer so I’ve had
no real use for GUI applications. I’ve been forcing myself to
learn this stuff as I can just see a time when I’ll need it. I’ve
been playing with Bluetooth/J2ME development as well. I
have a review coming up for the Sony Ericsson P900 smart
phone, so this has been a good chance to learn something
new. If you don’t enjoy getting up in the morning, perhaps
it’s time to rethink where you’re at.

Man with an Open Heart

Jason Bell is a
technical architect for

a business intelligence
company in England.
He is also involved in

a number of open source
projects and reads

the API docs.

jasonbell@sys-con.com

Jason Bell
Core and Internals Editor

I

CORE AND INTERNALS VIEWPOINT

C
O

R
E

H
O

M
E

D
E

SK
TO

P
E

N
T

E
R

PR
IS

E

I cannot stress the importance of your own personal development.
Learning is a constant process. Whether you do J2EE or J2ME,

there is still time to delve into the core API and cover areas that
you may not normally cover”

“

Workflow Automation – Business Process Integration – Web Services Orchestration

Life is in balance. All is in harmony. Developers are fulfilled. Business users are satisfied. And even cats and dogs have
agreed to live in peace worldwide. Because at long last, Reactor 5.5 is here.

Already the ideal workflow engine for developers seeking control, extensibility, and platform neutrality, Reactor 5.5 is
now the perfect tool for business users, giving them the ease of use they demand.

J2EE-based, XML-driven and available as royalty-free source code, Reactor 5.5 frees you to follow the path to true
enlightenment (and killer gains in productivity) by providing:

� A single, scalable process platform for defining and linking enterprise-wide workflows

� Extensible libraries of re-useable process components

� A user-friendly tool for point-and-click development of custom workflow solutions.

So light some incense, find your mantra and focus your chi. Because Reactor 5.5
is here to take you to Workflow Nirvana. Download a free evaluation copy at
www.oakgrovesytems.com/jdj or call us at (818) 440-1234.

We’d love to help you...

Declare Your Workflow Independence!™

©
 2

00
3

O
ak

 G
ro

ve
 S

ys
te

m
s.

 A
ll

rig
ht

s
re

se
rv

ed
. A

ll
pr

od
uc

t
na

m
es

 a
re

 t
ra

de
m

ar
ks

 o
r

re
gi

st
er

ed
 t

ra
de

m
ar

ks
 o

f t
he

ir
re

sp
ec

tiv
e

co
m

pa
ni

es
.

Process design tool, Reactor Studio, enables
quick development and deployment of workflows.

Announcing Reactor 5.5!

D
ow

nlo
ad

 y
our

fr
ee

ev
al

uat
io

n c
opy

to
day

 a
t

w
w

w
.o

ak
gro

ve
sy

st
em

s.
co

m
/j
dj

Welcome To
Workflow

Nirvana
The Functionality You Want
The Ease of Use Your Business Users Demand

34 February 2004 www.JavaDevelopersJournal.com

s Jason Bell pointed out in his editorial “A Modern
Day Cinderella” (JDJ, Vol. 8, issue 9), the spotlight is
on J2EE and as a result many programmers are ignor-
ing the foundation of the JDK. J2SE is the Java equiv-

alent of C/C++ standard libraries. Here we deal with the
lower-level entities, like the Number types, Integer, Long,
Float, and Double.

The Java Collections Framework (JCF) should be your first
choice when faced with the task of managing any type of col-
lection. The Collections API is one of the most useful parts of
the JDK. Looking back at the projects I’ve worked on over the
past 13 years, to some degree all of them involved managing
collections of data structures.

In this article I’ll review the collections architecture. I’ll
also point out some of the useful features of the collections
API (sorting and searching). To begin I’ll go over the class cat-
egories, followed by a more detailed explanation of each. I
encourage you to review Sun’s documentation at http://java.
sun.com/ products/jdk/1.2/docs/guide/collections/refer-
ence.html.

There are explicit class categories in the Collections
Framework. The J2SE Collections Framework consists of
interfaces, abstract base classes, and concrete implementa-
tions that provide a rich set of functionality for us. The imple-
mentations are the classes your application should be utiliz-
ing behind the scenes. There are implementations based on
maps and others that are backed by arrays. You can make
your collection read-only or you can add support for multi-
threaded access. How is a programmer to decide which entity
to use? There are two main criteria: thread safety and usage
semantics.

Usage semantics can be further broken down into collec-
tion- or map-based access. The library makes a distinction.
The Map interface is not related to any of the Collection inter-
faces, because its main purpose in life is to map a key to an
object, while the collection is just a loosely associated group
of objects.

Interfaces
Figure 1 provides a class diagram showing the interfaces

that make up the Collections API. The interfaces represent the
ideal types you should be passing around in your application.

I strongly urge you to expose only the interfaces to clients
of your classes. If you don’t do this and instead pass around
references to the concrete implementations, your code will
become brittle due to the number of changes required to
swap out one interface implementation for another. You
should strive to expose the most general interface. For exam-
ple, if a method is to return an ArrayList, first look and see if
the methods exposed by the Collection interface will meet
the needs of the intended usage (see Table 1). By doing this,
you give yourself the opportunity to modify your method to
return a LinkedList or any other type supporting the

Collection interface. Who knows? You may even want to pro-
vide your own implementation of a Balanced Tree, and if you
are instantiating and passing around references to a
TreeMap, you’ll have to alter the code at each reference.

Sets
The semantics of Sets are close to those of Lists. However,

Sets lack the notion of direct random access. A Set is just a
collection of objects that you may iterate over. A useful fea-
ture of Sets is that they do not allow duplicates as long as you
override hashCode() and equals() from Object. Listings 1–3
provide a short program that will illustrate this effect. There is
the main HashSetExample and two Person classes: one that
does not override Object.equals()/hashCode() and one that
does.

Running this program produces the follow output.

[000-11-1111, 222-23-1234, 000-11-1111]
[000-11-1111, 222-23-1234]

To remove duplicates your classes must override equals()
from java.lang.Object. According to the Javadoc, overriding
Object.hashCode() has more to do with performance.
Interestingly, Sun’s “Introduction to the Collections
Framework Short Course” mentions overriding only the

Java Collections
Managing collections

C
O

R
E

H
O

M
E

D
E

SK
TO

P
E

N
T

E
R

PR
IS

E

FRAMEWORKS

by David McReynolds

A

David McReynolds
has been programming

for over 12 years and
is currently employed

by Daugherty Business
Solutions as a consultant.

He has an MS in
computer science from

Southern Polytechnic
State University.

david.mcreynolds@daugherty.com

Figure 1 Collections Framework major interfaces

IA
<<interface>>

Collection IA
<<interface>>

Map

IA
<<interface>>

SetIA
<<interface>>

List

IA
<<interface>>

SortedSet

IA
<<interface>>

SortedMap

Table 1

Implementations

Interfaces

Collection Set

List

Map

Hash
Table

Resizable
Array

Balanced
Tree

Linked
List

HashSet

HashMap

ArrayList

TreeMap

TreeSet

LinkedSet

36 February 2004 www.JavaDevelopersJournal.com

C
O

R
E

H
O

M
E

D
E

SK
TO

P
E

N
T

E
R

PR
IS

E

Object.hashCode(). Beware that if you follow the tutorial to
the letter, you’ll still have duplicate entries. You must override
Object.equals(), as I’ve done in Listing 2, to prevent duplicates
in your Sets.

How about sorting this list? TreeSet can do that for us, but
we still have a choice to make. Will we be sorting by the natu-
ral order or do we want an ad hoc sort? For this article we’ll
examine the ad hoc sort (to implement your own natural
order, your class should implement the Comparable inter-
face). We can achieve an arbitrary sort order by utilizing the
Comparator interface. When we employ a comparator, it’s
passed to the sorting object. First, we need to create our sort-
ing algorithm (see Listing 4).

Now we can give this algorithm to the other implementa-
tion of Set; TreeSet. We add the following code to our main
method at line 29 in Listing 4.

29

30 Set sortedSet =

31 new TreeSet

32 (new PersonComparator());

33

34 sortedSet.addAll(set);

35

36 // sorted

37 System.out.println(sortedSet);

Now the output becomes:

[000-11-1111, 222-23-1234, 000-11-1111]
[000-11-1111, 222-23-1234]
[222-23-1234, 000-11-1111]

Cool, eh? I won’t go over this for each implementation. You
should be able to apply this concept to any of the other sort-
ing containers or utility methods (from Arrays or Collections).
It’s worth pointing out that even if you don’t override either
method, the TreeSet will use the Comparator and eliminate
duplicates in the sorted set. Figure 2 provides a class diagram
for the Set category.

The LinkedHashSet is a special implementation of HashSet
that supports list operations without directly implementing
the List interface. LinkedHashSet will maintain the insertion
order of the list elements, yet still allow you to access ele-
ments via a key, such as a traditional Map. And, as the name
implies, it is a Set that supports all of Set’s operations.

Lists
Collection’s other category is List; the implementations are

ArrayList and LinkedList (see Figure 3).
The List interface supports the notion of direct index–based

access to the entries, allows duplicates, and defines an order.
Direct index–based access is realized via the get(int) method,
which accepts an index as the only argument. You may even
acquire a subset of the List by specifying a “from index” and a
“to index”, the semantics of which closely follow that of String.
The element at “from index” will be included in the sublist
while the element at “to index” will not.

ArrayList should be preferred if you don’t require the ability
to insert elements into the middle of the List (you’re always
adding to the end of the List) and you require random access
to the elements. However, if you need to insert elements into
the List and sequential access is your main concern, then
LinkedList will be better.

Maps
Finally, we get to the Map category (see Figure 4). As men-

tioned earlier, Map is not related to any of the Collection
classes. This is because the JCF authors wanted to make a
clear distinction between Collections and Maps. The most
notable difference is that Maps do not support index-based
access semantics. What is the nth element of a Map?

If a Map is a Collection, what are the elements? The only
reasonable answer is “Key-value pairs,” but this provides a
very limited (and not particularly useful) Map abstraction.
You can’t ask what value a given key maps to, nor can you
delete the entry for a given key without knowing what value it
maps to.

Figure 2 Set category

IA
<<interface>>

Collection

AbstractCollectionCA
IA

<<interface>>

Set

HashSetC

IA
<<interface>>

SortedSet

TreeSetC

AbstractSetCA

LinkedHashSetC

Figure 3 List category

IA
<<interface>>

Collection

ArrayListC

AbstractListCA

IA
<<interface>>

List

VectorC AbstractSequentialListCA

LinkedListC

Figure 4 Map category

WeakHashMapC

AbstractMapCA

IA
<<interface>>

Map

TreeMapC

DictionaryCA

HashMapC

IA
<<interface>>

SortedMap HashtableC

PropertiesC

FRAMEWORKS

����������	
���
��������	
���������������
������
�����
���

��������������������������	�������
�

����
���������������
��������
����������
������������
����
��
������������
����
������
����
�������
�������
����
����������� !!!"#$$%�	
�&��'�����
�(�&�����������
�
�)
��(�*����������
���+���
��������
����
��
���)
���
���

�������������
��

��� ����!��"#�$%&��%'��"(�#"()�$%&*
,����)
��
)
��
����
���
���������"���������������������-������

�����
�������
.������
�����������������������������
��
/���
�
���������	
�&�������
�������������)
����
�������
���������
�����

����
�������������������	
�&�������
�������
��
������0&*&�0#11�	
���������'
�)��
���)��
���2�������
����������
����
3������"�
�����
���
�)
����������	
�&�������
��������
���������������������4$�5���6�
��7��+�8������

����
'9&�	
�&�������
����
�����
����
���'������������
��'
�)�
��������
����107��
�)
��������0*6���	
���)��
��������������

"���
��
��107�#�3��2���)
������������
������.�����
�� �5�����
��
��
����
����
��
�������)����������������
�������
�

&��	
�&�������
�������)
���
����
3�������������
���
�9&�1'����������
��������
�������
��������
	17������������������������������+�����:�������
����������
��������������	
�&�������
�����
��
�������������������������������
��������
��;�����������
������������<�
�)��
����
/���
�
����

.=�'.=>�:-8?
5�����
������

�����:���
�����
�����������
������������������������
����������������+������
���
������
�������

���
������������
�
�����
����������������������
�����"���������
�
����
��������
3�
����
������
�����������������������
��

0#11��.'�:-8?
7
��������������������
����������������������������������@>
�
��
���������������)������
A��2����
��
��������
��
���
���������?<<�����
���������
����<�������

9��
���07��<�����<0
���
9��
���0'�<'
�)�
��<107�
���)��
�0*6
����
������
���05B�
5
�����
��:��&���
��
-8&':����������
�
���������
��
	
��'����
 87�5��+
#$$67�57
6�'/�
�����
'/�
5
�����
��&����

�
��
����''����2��
C�5�����
 $$�1�����
	
��6�������.����:6&�

�������

D4!<��1��
�����

9��
��������<0
���
9��
���0'�<'
�)�
��
���)��
�0*6
����
������
���05B�
-8&':����������
�
���������
��
	
��'����
#$$67�5��+
4$67�57
6�'/�
�
��
����''����2��
#�5�����
#$�1�����
	
��6�������.����:6&�

�������

D E<�����
������

6����
��5
�����
�
'
�)
������������D !
�
���������?
#CF67�>&6
�
������%
%$87�>&:5
2��
����
=������
��5�����
=������
��	
��'��
�������
-8&':����������
�
������������9�
1�����
�����
�
�
�)
���������
�
�����������

�
������������
�����
���������@�
�
��
��A
�����
3���������
�

�������

D ! <��5
�����
�

:������������������
5
�����
���
�)
����
�
�
�������
���������
���D!!<����
�'���
�
>
�
��
���������)
����?

C����
������������
 $�7����������
-8&':����������
�
������������9�
C$G�5������
-�'���
��&����
1����&������6��

�������

D!!<��>
�
��
�

38 February 2004 www.JavaDevelopersJournal.com

FRAMEWORKS
C

O
R

E
H

O
M

E
D

E
SK

TO
P

E
N

T
E

R
PR

IS
E

The workhorse of this category is HashMap. For inserting,
deleting, and accessing elements, HashMap offers the best
implementation. TreeMap is the sorted version and offers the
ability to traverse the contents of the Map in a determined
order.

As with the HashSet earlier, HashMap will require you to
override Object.equals() and have a defined Object.hash-
Code() implementation on your own classes. And, of course,
the objects you place in TreeMap should be comparable [or
you must use the TreeMap(Comparator) constructor].

As with Sets, there’s a special implementation of Map that
supports a List-like view. LinkedHashMap provides for the
same deterministic ordering as LinkedHashSet and supports
all Map operations.

There’s a another specialized implementation of Map,
WeakHashMap, that uses weak references. By employing
WeakReference, the garbage collector is able to destroy
objects despite the Map’s reference. If no other thread holds a
reference to a key in the WeakHashMap, the garbage collector
is free to collect the key-value pair.

Abstractions
The framework offers several opportunities for creating

your own collection classes. The abstractions are for those
instances where you want a more application-specific collec-
tion. There are several abstract classes implementing the
interfaces with enough basic functionality to make your task
less painful (see Figure 5).

In general, you won’t be extending these classes unless
you want to try some new algorithm or storage technique.
Most likely you should turn your attention to the wrapper
classes as implemented by the Collections class. Using the
Decorator pattern, as these classes do, you may create
highly specialized versions of the containers. There’s an
excellent example in the group of classes created by Piet
Jonas for detecting type errors. Using Piet’s classes, it’s pos-
sible to have an exception thrown if an incorrect type is
inserted into a collection. These classes employ the exact
same design as the specialized wrappers available in the
synchronization and read-only methods that I’ll discuss
next.

java.util.Collections API
Did you know that many of the Vector’s methods are

declared with the synchronized modifier? Are you aware of
the cost of synchronization? While there have been advance-
ments in many JVMs, there is still a slight overhead incurred
with synchronization.

Unless several different threads might access your collec-
tion, forget about any of the thread-safe implementations.
Use one of the nonthread-safe implementations, like
ArrayList or HashMap. If you need index-based access, use
the ArrayList. If you are more concerned about key-based
access, use the HashMap.

While I may mention Vector and Hashtable from time to
time, you should be aware that these two classes are now
referred to as legacy code. The API has been reworked of late
and all of the collection APIs are now unsynchronized.
Special synchronized wrappers have been implemented
(and hidden from us) for creating polymorphic, thread-safe
implementations of the unsynchronized classes. You gain
access to these thread-safe versions via static methods on
the Collections class.

Collection Collections.synchronizedCollection(Collection);

List Collections.synchronizedList(List);

Map Collections.synchronizedMap(Map);

Set Collections.synchronizedSet(Set);

SortedMap Collections.synchronizedSortedMap(SortedMap);

SortedSet Collections.synchronizedSortedSet(SortedSet);

Notice that all of these methods accept the most gener-
al interface and return the same interface. If you make
judicious use of these generalities, you’ll be able to swap
out implementations relatively painlessly. Now keep in

Figure 5 Collection abstractions

IA
<<interface>>

Map

IA
<<interface>>

Set IA
<<interface>>

List

IA
<<interface>>

Collection

0..1 - keySet

0..1

- values

AbstractSetCA

AbstractCollectionCA

AbstractListCA

AbstractSequentialListCA

AbstractMapCA

Figure 6 Implementation classes

IA
<<interface>>

Map

IA
<<interface>>

Set

IA
<<interface>>

List

DictionaryCA

IA
<<interface>>

SortedSet

IA
<<interface>>

Collection

CAAbstractMap
IA

<<interface>>

SortedMap
HashtableC

HashMapC WeakHashMapC TreeMapC

AbstractCollectionCA

LinkedHashMapC

AbstractListCAAbstractSetCA

HashSetC TreeSetC AbstractSequentialListCA VectorCArrayListC

LinkedHashSetC LinkedListC

Table 2 Performance comparison

Compare Synch to Non-Synch with 100,000 Accesses
Time(ms)

ArrayList Vector Synchronized ListType

Action

Te
st

 R
un

Total Time
Array
Vector
Synch

Read Write Read ReadWrite Write
1
2
3
4
5
6
7
8
9
10

20
20
40
30
40
20
20
20
30
20

80
60
60
51
60
80
60
90
60
80

70
70
71
70
70
71
71
60
70
71

351
381
350
380
371
340
350
360
361
380

30
20
30
50
20
20
31
20
30
40

250
250
240
260
250
291
251
271
250
270

260 681 694 3624 291 2583

167%
12%

432%
279%

-11%
138%

-74%
40%

-63%

-58%

-81%

-29%

39February 2004www.JavaDevelopersJournal.com

mind that in theory, the implementation of collections
shall be free to do whatever it wants. You don’t want your
code dependent upon J2SE source. If you insist on using
the concrete classes, you’ll have to downcast to use the
results from the previous methods. Downcasting requires
knowledge of implementation. Things will change over
time. Try to insulate yourself from potential change
points. The entire Collections Framework wreaks polymor-
phism, so take advantage of it, as polymorphism is a good
thing.

I performed a small test to compare ArrayList, Synchro-
nizedList, and Vector, all three of which implement the
List interface. The results show that for synchronized
updates, Vector is the worst performer, while Synchro-
nizedList is much faster. Both are compared to the unsyn-
chronized ArrayList. The test involved completing a read
(get) or write (add) operation in a tight loop, 100,000 times
(see Table 2).

Comparing Vector to SynchronizedList shows that Vector
takes 138% and 40% more time than the same operations
on SynchronizedList. Meanwhile, SynchronizedList takes a
12% hit over ArrayList for read operations, compared to the
167% increase for Vectors. Some people might be confused
by the lack of symmetry in the numbers. If we want to
compare A to B, the proper equation is (A – B)/B. Therefore
if I want to compare 2 to 6, then (2 – 6)/6 gives –0.6667 or
–66%. If I compare 6 to 2, then (6 – 2)/2 gives 2 or 200%.
This may seem counterintuitive to saying 6 is three times
as large as 2 (which is just a simple ratio, not a compari-
son).

All of the collections support iterator semantics. Some will
bark at you if the underlying collection is altered while you
are accessing the iterator by throwing a ConcurrentModifi-
cation exception.

The static class Collections has many other useful meth-
ods for converting to and from certain types of collections.
Of interest are those dealing with the creation of unmodi-
fiable collections. First you create your collection and then
pass it into the appropriate method and your collection is
transformed into something that looks just like the origi-
nal, but now it will throw an exception if anyone attempts
to add or delete an object. Inner classes in Collections that
simply extend the standard collection class and override
the modifiers accomplish this. Now you can implement
the Command pattern and employ the concept of read-
only parameters and return structures. In a language that
deals exclusively with object references, that’s a nice-to-
have feature.

List Collections.unmodifiableList(List);

Map Collections.unmodifiableMap(Map);

Set Collections.unmodifiableSet(Set);

SortedMap Collections.unmodifiableSortedMap(SortedMap);

SortedSet Collections.unmodifiableSortedSet(SortedSet);

Sorting has been taken care of with a “tuned” implemen-
tation of Merge Sort. There are routines for sorting primi-
tives and objects. You can implement classes that have a
natural order by extending Comparable. If inheritance is at
a premium, use the Comparator interface. C++ program-
mers will feel right at home with this idiom from the STL.
There are even collections that are themselves sorted.
SortedTree allows you to add objects that will be sorted on
the fly. The API is so flexible that you can implement the
natural order.

Other utility methods in collections have to do with search-
ing a List. The Collections class offers two binary searching
methods.

Object Collections.binarySearch(List list, Object key);

Object Collections.binarySearch(List list, Object key, Comparator

comparator);

These two methods, one of which employs the natural
sort order of the list and the other the ad hoc, run in log(n)
time where n is the number of elements in the list. However,
this is true only if the list passed in implements the
RandomAccess interface. Otherwise, if the list does not
implement RandomAccess and is large, the search will exe-
cute an iterator-based binary search, which according to the
Javadoc will “perform O(n) link traversals and O(log n) ele-
ment comparisons.”

Figure 6 shows the big picture with the preferred exten-
sion points highlighted. We’ve discussed the general cate-
gories: Collection (Set, List) and Map. We’ve played around
a little and have seen that to take full advantage of some
collections, we have to override Object.equals and
Object.hashCode. Also, we went over some of the perfor-
mance tradeoffs of a couple of implementations. I should
mention that there are other Collection APIs available to
Java programmers. There’s the popular JGL and the JDSL. I
haven’t looked at the JGL but I have played around with the
academic version of the JDSL. The JDSL gives you all those
nifty data structures you talked about in your junior year
algorithms class.

Google, the world leader in large-scale information retrieval, is
looking for experienced software engineers with superb design
and implementation skills and considerable depth and breadth in
the areas of high-performance distributed systems, operating
systems, data mining, information retrieval, machine learning,
and/or related areas. If you have a proven track record based on
cutting-edge research and/or large-scale systems development
in these areas, we have plenty of challenging projects for you in
Mountain View, Santa Monica and New York.

Are you excited about the idea of writing software to process a
significant fraction of the world's information in order to make it
easily accessible to a significant fraction of the world's population,
using one of the world's largest Linux clusters? If so, see
http://www.google.com/cacm. EOE.

40 February 2004 www.JavaDevelopersJournal.com

FRAMEWORKS
C

O
R

E
H

O
M

E
D

E
SK

TO
P

E
N

T
E

R
PR

IS
E

There are some new collections available in the latest JCF:
LinkedHashSet, LinkedHashMap, and IdentityHashMap. In
general they are highly specialized versions of the core JCF
classes.

Conclusion
This article should prompt you to take another look at

the Collections Framework and, if you are lucky, you’ll see
something that fits with your current development task. If
you are really lucky, perhaps you’ll see something else in
the J2SE libraries that you never knew existed, collection
related or not. Unfortunately, there doesn’t seem to be any
J2SE champion at Sun, so you’ll have to make an effort to
scan through the API’s Javadoc every so often and perhaps
even the source code as well (there are some novel snippets
in there).

References
• The Collections Framework: http://java.sun.com

/j2se/1.4.2/docs/guide/collections/ index.html
• Java Collections API Design FAQ: http://java.sun

.com/j2se/1.4.2/docs/guide/collections/designfaq

.html

• Annotated Outline of Collections Framework: http://java.
sun.com/j2se/1.4.2/docs/guide/collections/reference
.html

• Collections Framework Tutorial: http://java.sun.com/
docs/books/tutorial/collections/index.html

• Introduction to the Collections Framework Short Course:
http://developer.java.sun.com/developer/online
Training/collections/Collection.html

• Jonas, P. “Secure Type-safe Collections”: www.java
world .com/javaworld/jw-04-2001/jw-0427-collections
.html

• Goetz, B. “Threading lightly, Part 1: Synchronization is
not the enemy”: www-106.ibm.com/developerworks/
java/library/j-threads1.html

• Eck, D.J. Programming with Collections, Introduction
to Programming Using Java: Chapter 12 “Generic
Programming and Collection Classes,” version 4.0,
July 2002. http://math.hws.edu/javanotes/c12/index.
html

• Bell, J. “It’s a Modern Day Cinderella.” Java Developer’s
Journal, Vol. 8, issue 9.

• JDSL: www.cs.brown.edu/cgc/jdsl/
• JGL: www.recursionsw.com/products/jgl/jgl.asp

Listing 1: Person Class
1 // Person Class

2 public class Person {

3 private String ssn;

4

5 public Person(String newSSN) {

6 this.ssn = newSSN;

7 }

8

9 public String toString() {

10 return ssn;

11 }

12 }

Listing 2: PedanticPerson
1 // PedanticPerson Class overrides

2 // hashCode and equals.

3 public class PedanticPerson

4 extends Person {

5

6 public PedanticPerson(

7 String newSSN) {

8 super(newSSN);

9 }

10 public int hashCode() {

11 return getSSN().hashCode();

12 }

13 public boolean equals(

14 Object obj) {

15 Person p = (Person) obj;

16

17 return getSSN().equals(

18 p.getSSN());

19 }

20 }

Listing 3: Main Program
1 import java.util.HashSet;

2 import java.util.Set;

3

4 public class HashSetExample {

5

6 public static void main(

7 String[] args) {

8

9 Set dupSet = new HashSet();

10 dupSet.add(new

11 Person("000-11-1111"));

12 dupSet.add(new

13 Person("222-23-1234"));

14 dupSet.add(new

15 Person("000-11-1111"));

16

17 // has duplicates

18 System.out.println(dupSet);

19 Set set = new HashSet();

20 set.add(new

21 PedanticPerson("000-11-1111"));

22 set.add(new

23 PedanticPerson("222-23-1234"));

24 set.add(new

25 PedanticPerson("000-11-1111"));

26

27 // has no duplicates

28 System.out.println(set);

29

30 }

31 }

Listing 4: PersonComparator
1 // PersonComparator will be used

2 // to sort the Persons in

3 // descending order based

4 // on SSN.

5 public class PersonComparator

6 implements Comparator {

7

8 public int compare(

9 Object o1,

10 Object o2) {

11

12 Person p1 = (Person) o1;

13 Person p2 = (Person) o2;

14

15 String ssn1 = p1.getSSN();

16 String ssn2 = p2.getSSN();

17

18 return ssn2.compareTo(ssn1);

19 }

20 }

T
w

o
ye

ar
s

w
it

h
ou

t
a

va
ca

ti
on

.
T

h
e

ap
pl

ic
at

io
n

’s
 u

p.
It

’s
 d

ow
n

.
It

’s
 u

p.
It

’s
 d

ow
n

.

I’
m

 t
o

bl
am

e.
S

te
ve

’s
 t

o
bl

am
e.

S
om

eo
n

e’
s

al
w

ay
s

to
 b

la
m

e.
N

ot
 a

n
y

m
or

e.
G

et
 W

il
y.

™

©
20

03
 W

ily
 T

ec
hn

o
lo

g
y,

 I
nc

.
T

he
 W

ily
 lo

g
o

 is
 a

 t
ra

d
em

ar
k

o
f

W
ily

 T
ec

hn
o

lo
g

y,
 I

nc
.

Ja
va

 is
 a

 t
ra

d
em

ar
k

o
f

S
un

 M
ic

ro
sy

st
em

s
in

 t
he

 U
.S

.
an

d
 o

th
er

 c
o

un
tr

ie
s.

E
n

te
rp

ri
se

 J
av

a
A

pp
li

ca
ti

on
 M

an
ag

em
en

t

1
88

8
G

E
T

 W
IL

Y
w

w
w

.w
il

yt
ec

h
.c

om

42 February 2004 www.JavaDevelopersJournal.com

nput/Output (I/O) is one of the fundamental aspects of

computing that you have to deal with at some point during

the application’s development phase. Dealing with I/O

presents its own challenges because I/O access is still slow. For

example, reading or writing data from or to a disk involves a

choreography of electronic, mechanical, and computer engineering

disciplines, making the task slow in comparison to, say, reading or

writing from random access memory over a high-speed bus.

To minimize the impact of working with slow I/O mediums
and to maximize throughput and performance, software
designers have devised a variety of strategies. These strategies
include, but are not limited to, vectored I/O (scatter/gather)
and multiplexing I/O. These strategies can be found in use in
I/O-intensive applications, typically written in C or C++.
However, in the world of Java such strategies were not applica-
ble and a developer who wants to write a scalable, high-per-
formance I/O-intensive application would, most likely, resort
to writing native code.

This situation drastically changed with the introduction of
the New Input/Output (NIO) packages along with the Merlin
release (JDK 1.4). The NIO packages introduced an array of
new functionalities, including improved performance in Buffer
Management, Scalable Network & File I/O, Character-Set sup-
port, and Regular Expression Matching. All of these enable a
developer to write portable, high-performance, and scalable
I/O-intensive applications.

This article provides an overview for developers who
are planning to incorporate the NIO functionality in their
application and for developers who are looking for tech-
nologies that enable them to write high-performance I/O
applications. This article provides an introduction to the
buffers, channels, memory-mapped files, file locking, and
multiplexing I/O.

High-Performance Input/Output
With the current I/O architecture (JDK versions prior to 1.4),

developers used streams to perform I/O operations. The basic
sets of streams that make up the bulk of the I/O are byte
streams and character streams. These streams provide APIs to

carry out fundamental operations, such as reading data from a
stream into an array and writing data from an array into a
stream. The stream-based I/O blocked while the core I/O oper-
ations took place. In other words, a read() method does not
return until all the data is read from the stream and, similarly, a
write method does not return until all the data is written to the
stream. This blocking nature of I/O resulted in performance
bottlenecks while writing high-performance I/O-intensive
applications.

Apart from blocking, working on raw bytes as they become
available is a cumbersome process. Buffering the data as a
method of improving the performance was not incorporated in
the core design of streams. This means that every single byte
written to a stream is passed on to the operating system and
then flushed to the physical or the network medium. This is a
very inefficient way of handling I/O and results in performance
issues.

A common strategy was to explicitly insert a buffering
class following the decorator design pattern. This mecha-
nism is incorporated in the core I/O API by means of
buffered streams such as BufferedReader. To use buffered
streams you have to pipe a nonbuffered stream into a
buffered stream and then work with it. Working with buffered
streams certainly alleviates the issue of working with raw
bytes, but then the buffering logic was hidden deep in the
bowels of the buffered streams. This strategy provided the
application developer with little or no control over the
buffers. Also, using these buffers is not very efficient because
it involves a lot of data copying from user space buffers to
O/S buffers via the JVM buffer.

The NIO framework introduced with JDK version 1.4
addressed all the shortcomings of stream (and buffered
stream) based I/O and also provided a suite of new functionali-
ties. To understand the fundamental concept of NIO, there are
two aspects that need to be mastered: buffers and channels. In
the following sections, we will look at buffers and channels in
detail.

Buffers
A buffer is a container that can hold a finite and contiguous

sequence of primitive data types. It’s essentially an object
wrapper around an array of bytes with imposed limits. A con-
tainer that is 180 degrees apart from the buffer is an ArrayList,
which, in theory, is capable of holding an unlimited amount of
data. The buffers were introduced not only to provide the
application developer with more control, but also to speed up
the I/O application.

by Vishwanath K

C
O

R
E

H
O

M
E

D
E

SK
TO

P
E

N
T

E
R

PR
IS

E

I

Vish Krishnan, PMP, is a
project lead at Cap Gemini

Ernst & Young in
Overland Park, KS.

He has about eight years
of IT experience spanning a

variety of technologies.

viswanath.krishnan@cgey.com

FEATUREFEATURE

43February 2004www.JavaDevelopersJournal.com

The buffer is implemented as an abstract class in the
java.nio package and has seven direct descendants:
ByteBuffer, CharBuffer, DoubleBuffer, FloatBuffer, IntBuffer,
LongBuffer, and ShortBuffer. A buffer is characterized by three
important properties: capacity, limit, and position. These
properties are set during buffer creation and during buffer
manipulation. A buffer is created in two possible ways – either
by calling the allocateDirect() factory method or by calling the
allocate() factory method. Both of these methods take an int
as a parameter, which represents the newly created buffer’s
capacity. The difference between the two buffer creation
strategies is that the allocateDirect() method creates a native
buffer that is outside the JVM heap. This circumvents the
extra copying that’s normally required between the JVM
buffer and O/S buffer, resulting in a marked improvement in
performance. However, this improvement comes at a price –
there’s a higher cost associated with the setup and teardown
of direct buffers. But with cunning programming practices,
such as buffer creation during application startup, the cost of
creation/destruction could be balanced down in favor of
marked improvement in performance.

ByteBuffer buffer = ByteBuffer.allocate(512);

ByteBuffer directBuffer = ByteBuffer.allocateDirect(512);

String str = "Hello";

byte[] data = str.getBytes();

buffer.put(data);

The first two lines of this code snippet result in the creation
of a nondirect ByteBuffer and a direct ByteBuffer. The newly
created buffer will have the properties indicated in Figure 1.
Data is added to this newly created buffer by calling any of
the overloaded put() methods with appropriate parameter(s).
In the code example we add the string “Hello” to the byte
buffer. After calling put(data) the buffer now has data. The
properties of the buffer are altered as indicated in Figure 1.

As we can see, the position pointer now points to the next
empty cell after the data. So if we are to use this buffer to read
the data and possibly make some business sense out of it, we
need to flip the position of the position pointer. This is
accomplished with the following code snippet.

buffer.flip();

int limit = buffer.limit();

byte[] data = new byte[limit];

buffer.get(data);

System.out.println(new String(data));

The flip() method readies the buffer for draining by reset-
ting the position and limit pointer. The capacity pointer is left
unchanged. After the flip() is called, the position pointer
points to the first cell, and the limit pointer points to the cell
where the position pointer used to point before the flip()
method was called. A clarification on the difference between
limit and capacity is in order at this time. Capacity is the max-
imum number of items a buffer can hold, whereas limit is a
value that ranges from zero to capacity, representing an arbi-
trary limitation for the buffer. The limit is set by calling either
the limit() method or the flip() method.

It should be noted that the bytes are ordered in a certain
fashion, which is based on the byte ordering supported by the
platform. For example, byte ordering in x82 architecture is lit-
tle-endian and the byte ordering in the Unix platform is big-
endian. However, the byte ordering can be explicitly set by the
order(ByteOrder byteOrder) method on the buffer. The order()

method (without parameters) returns the current byte order-
ing for this buffer. Figure 2 demonstrates the difference in lit-
tle-endian and big-endian byte ordering of the magic number
of the Java byte code.

Channels
A channel represents an open connection to an entity such

as a hardware device, a file, a network socket, or a program
component that is capable of performing one or more I/O
operations. For example, we could have a SocketChannel or a
FileChannel that represents a connection to a socket or to a
file, respectively. The main difference between streams and
channels is that for the former we need to have separate
streams to do reading and writing, but in the latter case we
need only one channel to accomplish both reading and writ-
ing. The other difference is that streams operate on raw bytes,
whereas channels operate on buffers.

The Channel interface and its extension are defined in the
java.nio.channels package.

Figure 1 Buffer properties

Initial State

Limit
Capacity

Position

After Writing some data - put()

Position Limit

Capacity

H E L L O

flip()

Limit CapacityPosition

H E L L O

After Reading all the data - get()

Position

Limit Capacity

H E L L O

44 February 2004 www.JavaDevelopersJournal.com

FEATURE
C

O
R

E
H

O
M

E
D

E
SK

TO
P

E
N

T
E

R
PR

IS
E

Figure 3 provides a high-level view of the Channel interface
and its subinterfaces.

The three interfaces – ByteChannel, ReadableByteChannel,
and WritableByteChannel – are fairly self-explanatory about
their functions. The ScatteringByteChannel and GatheringByte-
Channel provide the means for reading or writing a sequence of
bytes from multiple buffers in a single invocation. Scattering
and gathering, also known as vectored I/O, have been around
for a while and are widely used for developing high-perform-
ance I/O applications. A real-world example that makes exten-
sive use of this concept at the device level is an SCSI controller.
Listing 1 demonstrates the application of ScatteringByte-
Channel in a conjured-up application – a WAV player that plays
WAV files. A WAV file is made up of three major components:
the RIFF chuck (12 bytes) that identifies the file as a WAV file;
the format chunk (24 bytes) that identifies parameters such as
sampling rate, channels, bytes/second, etc.; and the data chunk
(the rest) that contains the actual data in bytes. Listing 1 shows
how to read all this data in a single invocation.

Scattering, using an array of ByteBuffer, results in a data
transfer in a single method invocation. This technique avoids
the need for multiple system calls to perform the reads, and
combines all reads into one optimized read system call. The
result – a performance boost through the means of optimized
data transfers to/from variable-size buffers. Similar logic
holds true for GatheringByteChannel.

SelectableChannel
A SelectableChannel is a channel that can be multiplexed

by a Selector. The details about the workings of the Selector
are elaborated on later in the article. The descendants of
SelectableChannel are DatagramChannel, Pipe.Sink Channel,
Pipe.SourceChannel, ServerSocketChannel, and
SocketChannel. In this section we’ll quickly glance through
the purpose of a few popular channels.

ServerSocketChannel and SocketChannel
ServerSocketChannel is a selectable channel for stream-

oriented sockets (ServerSocket). This creates a socket that
accepts the inbound client connections. This socket cannot
read or write. Binding and socket manipulation must be done
by using the channel’s peer – the ServerSocket, which can be
obtained by the socket() method. SocketChannel is a selec-

table channel for stream-oriented sockets (Socket). This is an
abstraction of the Socket with the added functionality of non-
blocking operations. Binding and socket manipulation must
be done using the channel’s peer – Socket, which can be
obtained by the socket() method.

FileChannel
FileChannel is probably the most frequently used channel,

as it’s used for reading, writing, mapping, and manipulating
the file. With FileChannel it’s now possible to do more than
just reading or writing. Two of the major functionalities that
could be accomplished using FileChannel are discussed below.

Memory Mapped Files
Memory mapping of a file involves mapping certain por-

tions of the file or the entire file directly into memory. Any
changes that are made to the mapped regions of the file are
flushed to the underlying file. This is a piece of functionality
that was missing in Java but that could be done using C or
C++ starting from MUTICS O/S. These procedural languages
use the mmap() function to map a file into the memory. The
resulting file pointer is then used to manipulate the file. In
Java, with NIO it’s now possible to map an entire file or por-
tions of a file into memory using the following code.

File f = new File("LargeMemoryMapFile.dat");

RandomAccessFile raf = new RandomAccessFile(f, "rw");

FileChannel fileChannel = raf.getChannel();

MappedByteBuffer mappedByteBuffer =

fileChannel.map(MapMode.READ_WRITE, 0, f.length());

The map() method of the FileChannel returns a
MappedByteBuffer, a particular kind of direct buffer. The
main advantage of mapping a file is that the file that’s
mapped into memory results in the O/S mapping the file as
its virtual memory. If a particular portion of the file is modi-
fied, only that part is bought into physical memory by means
of a page fault. This is particularly advantageous while work-
ing with files that are large in size (in order of gigabytes).

As an example, if you were to write a text editor for a
Win32-bit system, then you could potentially work with files
larger than two gigabytes. Working with such large files could
be a major drain on performance unless it’s done using mem-
ory-mapped I/O. However, when dealing with small files that
are on the order of a few kilobytes, memory mapping doesn’t
translate into any performance advantage.

It is possible to load the contents of the entire file into
physical memory using the load() method of the
MappedByteBuffer. Mapping the entire file into physical
memory using load() will result in a large number of page
faults (at the O/S level), which will be a serious drain on the
application performance. This is especially true while working
with large files. The solution to this problem is to map only
certain portions of the file into memory. This is accomplished
by providing the appropriate position and size as a parameter
for the map() method of FileChannel.

In addition, the mapping could be done in any of the three
possible modes: Read Only, Read/Write, and Private. In Read
Only mode only the read operation could be done on the
buffer. Any attempt to write to the buffer will result in a
checked exception being thrown. In Read/Write mode it’s
possible to carry out both read and write on the buffer. In
Private mode, any changes made to the buffer will not be
propagated to the file and the changes will not be visible to
other programs that might have mapped the same file.

Figure 2 Byte ordering

BE BA FE CA

CA FE BA BE

Little Endian Ordering

CA FE BA BE

CA FE BA BE

Big Endian Ordering

Figure 3 NIO class hierarchy

<<interface>>
Channel

<<interface>>
WritableByteChannelI I

I

<<interface>>
ReadableByteChannel

<<interface>>
GatheringByteChannelI

<<interface>>
ScatteringByteChannelII

<<interface>>
ByteChannelI

I

46 February 2004 www.JavaDevelopersJournal.com

File Locking
With the current I/O, the ability to lock a file is not available

as part of the API. To implement this functionality a developer
has to write JNI code, thereby making the code nonportable
(defeating WORA). The NIO introduced the ability to lock the
file, providing clean, consistent, and 100% portable code. File
locking is typically required when there is a need for data shar-
ing and mutual exclusion among applications. The file locks
are built right into FileChannel and it’s now possible to lock
files on any O/S that supports the file-locking functionality.
This is achieved with the code in Listing 2.

The lock() method acquires an exclusive lock on the file
channel. It’s also possible to obtain a lock on a section of a file
as opposed to locking the entire file. This is possible through
the call lock method (long position, long size, boolean
shared).

A file lock is held until the release() method is explicitly
called or until the file channel is closed. A word of caution:
certain O/Ss don’t permit a locked file to be mapped into
memory and vice versa. Therefore, programs that rely on
memory mapping and file locking may not be portable.

Selector
There are times when a developer has to wrestle with han-

dling I/O from multiple data sources. With traditional, block-
ing stream-based I/O, the typical strategy is to spawn multiple
threads to read/write data from multiple streams. This is done
because by using a single thread to read/write data from/to
multiple streams, we run the risk of blocking when there’s no
data available in the stream. However, spawning multiple
threads is not a target state solution because of the limitation
it introduces. A thread when created is allocated up to one

megabyte of contiguous memory. In a 32-bit process, we’re
limited to a maximum of four gigabytes of memory (2^32
bytes) – meaning we’ll start getting
java.lang.OutOfMemoryError before we hit around 4,000
threads. Although 4,000 threads may sound like too many, for
a serious multithreaded high-performance application, 4,000
threads is just not enough (think of a multithreaded Web serv-
er).

When handling data from multiple data sources, a proce-
dural language such as C doesn’t suffer from Java’s limitations.
Handling multiple data sources in C is achieved by means of a
select() system call. However, with the release of Merlin Java
(version 1.4), the inability to deal with multiple data sources
in Java was finally put to rest. This release injected new life
into the world of scalable I/O by means of multiplexing I/O.
Multiplexing I/O becomes possible when a read/write opera-
tion doesn’t block.

Before we look at nonblocking I/O in detail, let’s take a
quick peek at traditional blocking I/O. In a stream-based
application, when an I/O operation is performed, say a read()
operation, the method is blocked until some data is made
available.

Figure 4 demonstrates the steps involved in the data trans-
fer between two systems using network sockets.

The data transfer between a client and the server involves
multiple buffer copying and transfers through the network. So
when the client enters the read() method, the entire data may
not be available in the buffer. The client blocks until the entire
requested data is made available to the client. In a nonblock-
ing I/O, the read call returns immediately with whatever data
is available. However, working with incomplete data does not
serve a purpose and therefore the client has to resort to
polling, which involves sitting in a tight loop waiting for all
the data to become available.

Polling results in burning CPU cycles and is, therefore,
considered inefficient. A better mode of operation would be
an event-driven mechanism where an appropriate notifica-
tion takes place when the data becomes available. This is
what the Selector mechanism provides. This notification
mechanism, coupled with nonblocking functionality, enables
developers to write high-performance, scalable I/O-intensive
applications.

A note on the Reactor design pattern is in order at this
point. The Reactor pattern decouples the events arrivals
from event handling. The events arrive at an arbitrary time
and are not dispatched immediately. The reactor keeps
track of the arrived events and dispatches only when the
handler asks for them. This architecture is indicated in
Figure 5.

The Selector class that’s found in the java.nio.channels
package plays the role of the “Reactor” as stated in the
Reactor design pattern. The Selector multiplexes events on
the SelectableChannel. The channels that extend the
SelectableChannel class could be placed into a nonblocking
mode using the configureBlocking() method call. This
means that the three channels – ServerSocketChannel,
SocketChannel, and DatagramChannel – that extend
AbstractSelectableChannel could be placed in a nonblocking
mode. However, FileChannel cannot be placed in a non-
blocking mode.

A reference to the Selector is obtained through the static
method open() on the Selector class. A reference to
ServerSocketChannel or SocketChannel is obtained through
the static method open() on those classes. The ServerSocket-
Channel and SocketChannel could be placed in nonblockingTable 1 Valid operations

Class Valid Operation
ServerSocketChannel OP_ACCEPT
SocketChannel OP_CONNECT, OP_READ, OP_WRITE

DatagramChannel OP_READ, OP_WRITE

Figure 4 Data transfer across the network

NETWORK

Server

O/S

Client

O/S

Figure 5 Reactor

Reactor

Client #1

Client #2

Client #3

Client #4
dispatcher

Compute decode encode ComputeWriteRead

HandlerAcceptor

CTIA WIRELESS 2004
is the one show where wireless standards are

created and the technological direction of the

industry is set. With the largest gathering of

wireless engineers and technologists, this is

where you will find the tools you need to help

build and advance the wireless industry.

Look at all CTIA WIRELESS 2004 has to offer
the wireless engineer and technologist:

� 6 CTIA educational sessions dedicated to
exploring wireless technology

� IEEE Wireless Communications Network
Conference (WCNC) 2004 – the industry’s
foremost conference for developing wireless
standards and engineering

� WiFi Summit – the CTIA Smart Pass program, a
cutting edge look at WiFi strategy and security

� A 400,000 square foot exhibit floor displaying the
latest in wireless technology and applications

CTIA Global

l i v e w i r e l e s s .

w o r k w i r e l e s s .

b e w i r e l e s s .

The most important

technology event

of the year!

March 22-24, 2004 Georgia World Congress Center Atlanta, GA, USA www.ctiashow.com

welcome the wireless generation.

© CTIA 2003

Produced by

Russell Simmons
Chairman & CEO, Rush Communications,

Co-founder & Chairman, Def Jam Records

Scott McNealy
Chairman & CEO

Sun Microsystems, Inc.

John T. Chambers
President & CEO

Cisco Systems

48 February 2004 www.JavaDevelopersJournal.com

FEATURE
C

O
R

E
H

O
M

E
D

E
SK

TO
P

E
N

T
E

R
PR

IS
E

mode by simply invoking configureBlocking() with false as the
method parameter. This is demonstrated in the following
code snippet.

Selector selector = Selector.open();

SocketChannel channel = SocketChannel.open();

channel.configureBlocking(false);

channel.register(selector, SelectionKey.OP_CONNECT |

SelectionKey.OP_READ);

The next step is to register the channel with the selector (not
the other way around), indicating the events of interest. This is
done using the register() method of the SelectableChannel
abstract class. The event of interest depends on the type of
selectable channel. Table 1 presents valid operations for a few
subclasses of the AbstractSelectableChannel.

After registering the channel with the selector, the next step
is to wait till the Selector indicates that an event of interest
has occurred. This is achieved through the select() method,
which blocks until an event of interest occurs. When an event
of interest does occur, the select() method returns with an
integer indicating the number of updated keys. A key is an
instance of the SelectionKey class that defines the relation-
ship between the SelectableChannel and the Selector. As an
aside, a selection key is created each time a channel is regis-
tered with the selector. The key remains valid until it is can-
celled by invoking its cancel() method on the SelectionKey.
The selector maintains three different sets of selection keys:
• The key set that represents the set of channels that are reg-

istered with the selector
• The selected key set that represents the set of channels

that are detected to be ready for at least one of the opera-
tions identified in the key’s interest set during a prior
selection operation

• The cancelled key set that represents the set of keys that
has been cancelled but whose channels have not yet been
deregistered

When the select() method returns the updated set, we need
to look for the selected key set that’s obtained by the
selectedKeys() method. Once we have the selected key list, we
iterate through the list of keys. For each key we get the corre-
sponding channel that generated the event of interest by invok-
ing the channel() method. In the case of the server, this method
returns ServerSocketChannel, which could be used to accept
the incoming client connection. With the SocketChannel you
need to check which event might have occurred. The previous
code snippet indicated that we have expressed interest in con-
nect and read. The following logic can be used to determine
which event caused the select to return.

while (selector.select() > 0) {

Set keys = selector.selectedKeys();

Iterator readyIter = keys.iterator();

while (readyIter.hasNext()){

SelectionKey key = (SelectionKey) readyIter.next();

if (key.isConnectable()) {

// Do something...

} else if (key.isReadable()) {

// Do Something...

}

}

Keep in mind that while iterating over the selected key set,
it’s imperative that we remove the key that was just obtained.

This is necessary because the selected key set might have
been updated while the processing was going on. This is
achieved with the following code:

while (readyIter.hasNext()) {

// Get key from set

SelectionKey key = (SelectionKey)readyIter.next();

// Remove current entry

readyIter.remove();

…

}

Thus using the Selector class in conjunction with threads
enables a developer to write a high-performance, non-
blocked, and scalable I/O application. An example reactor
implementation is provided along with this article, which
details the concepts described above. The source code can
be downloaded from www.sys-con.com/java/sourcec.cfm.

Conclusion
The new I/O features introduced in the Java version 1.4

release provide exciting new ways to improve the perfor-
mance and scalability of your I/O-intensive applications.
This is especially good news for server-side developers, who
can now use this powerful feature to develop robust applica-
tions without resorting to nonstandard coding practices.

References
• New I/O APIs documentation: http://java.sun.com/j2se/

1.4.1/docs/guide/nio/index.html
• Tanenbaum, A. (2001). Modern Operating Systems, Second

Edition. Prentice Hall.
• Hitchens, R. (2002). “Top Ten New Things You Can Do with

NIO.” O’Reilly Network: www.onjava.com/pub/a/onjava/
2002/10/02/javanio.html

Listing 1

File file = new File(fileName);

RandomAccessFile raf = new RandomAccessFile(file, "r");

FileChannel fileChannel = raf.getChannel();

ByteBuffer riffChunck = ByteBuffer.allocate(12);

ByteBuffer headerChunck = ByteBuffer.allocate(24);

ByteBuffer dataChunck =

ByteBuffer.allocate((int)file.length()-12-24);

ByteBuffer[] wavChunks = {

riffChunck, headerChunck, dataChunck

};

fileChannel.read(wavChunks);

Listing 2

File f = new File("FileToBeLocked.dat");

RandomAccessFile raf = new RandomAccessFile(f, "rw");

FileChannel fileChannel = raf.getChannel();

FileLock fileLock = fileChannel.lock();

if (fileLock.isValid())

doSomethingHere();

fileLock.release();

// or close the channel releases the lock!

Forget
something?

The wild blue yonder of operational monitoring and management is extremely unforgiving.

Which means that going live with the monitoring software you used in development is a great way

to go dead—quickly! You simply can't support operations if your staff is drowning in details provided

by development profiling tools and debuggers. Let NetIQ cover your apps...with AppManager.

AppManager—the industry’s easiest-to-use Systems Management suite—is a proven management

system for monitoring J2EE application servers, databases, operating systems and even end-user

response time. NetIQ’s AppManager monitors ALL application components—not just your server.

NetIQ. Nobody does UNIX better. Nobody.

Visit us at www.netiq.com/solutions/web to learn how we can help you address the challenges

of your operational monitoring and management.

Post-launch is NOT the time to be verifying web applications.

oops.

©Copyright 2003 NetIQ Corporation. All rights reserved. NetIQ and the NetIQ logo are registered trademarks of the NetIQ Corporation. All other names and
products mentioned herein may be the registered trademarks of their respective companies.

50 February 2004 www.JavaDevelopersJournal.com

evPartner Java Edition is a profiling tool from
Compuware that helps developers envision the reality
of their designs and implementations. It clearly shows
the performance, memory, and code coverage of vari-

ous modules in your project. If you always wondered how
your particular implementation would behave and want to
buy a tool to show the profiling statistics of your project, this
review should interest you.

DevPartner is a good tool for getting a correct picture of
your application. It tells you how it is performing, how much
memory each module of the application takes when execut-
ing, and how many times a piece of code has been executed.

It can be downloaded, installed, and configured very easi-
ly; I didn’t run into any problems. DevPartner can be
attached to various application servers for profiling. It does
cover the popular servers like WebSphere, WebLogic, etc., but
I wish it could be hooked to others as well, for example,
JBoss. Figure 1 shows one such setup screen for Apache’s
Tomcat server.

The server is automatically run by DevPartner when the
user hits the Continue button. The state of the server is also
indicated on the upper panel of this screen. As the server is
executing an application, profiling data can be collected and
viewed at any time.

The three main features – Performance, Memory Analysis,
and Code Coverage – can be selected by a dropdown from
the configuration screen shown in Figure 1. To change the
feature from Performance to Memory Analysis, first stop
the server, select Memory Analysis from the dropdown,
then restart the server. This clearly is a drawback and a
tedious process.

Performance
This tool measures performance fairly accurately in many

different ways, such as percentages, average time, etc. To see
problematic areas at a glance in an application, the percent-
age method is quick to show the user the areas where more
time is being spent, and it can show you how much time is
spent in each method of a class. The user can also browse the
source code, if the paths are set right.

Memory Analysis
DevPartner also shows the memory used by any part of

an application. The representation is very graphical and
the user is allowed to drill down to methods and also
browse the source code. It can show memory on a per-
thread basis too.

Memory analysis is also shown in real time as the project
is executed by the server. The user can choose to run garbage
collection manually by hitting a button on a screen (see
Figure 2).

Code coverage
Yet another presentation is the code coverage. Here the tool

gives you a count of the number of times a part of the applica-
tion has been executed during a particular run. This can be very
helpful to efficiently trimming the code to improve performance.

Other Features
With each of these features DevPartner provides useful

views. One such example is the method call trace view (see
Figure 3). This gives a pictorial view of how various methods
are called in an application during execution.

Vijay Phagura, a professional
Java/J2EE consultant, has over 12

years of experience in software
architecture and development. He
specializes in designing and devel-

oping software using J2EE and
other Java technologies.

vphagura@yahoo.com

DevPartner 3.0.1
Java Edition

LABS

C
O

R
E

H
O

M
E

D
E

SK
TO

P
E

N
T

E
R

PR
IS

E

Reviewed by
Vijay Phagura

D
by Compuware Corporation

One Campus Martius
Detroit, Michigan 48226
PPhhoonnee:: 800 521-9353
WWeebb:: www.compuware.com

PPllaattffoorrmmss:: Windows XP/2000/NT/98/ME; Solaris 8 and 9; Red Hat Linux 7.3
or 8.0 Personal, Professional, and Advanced Server Editions
JJaavvaa VViirrttuuaall MMaacchhiinnee:: Sun 1.3.1 (32-bit as Classic and Hotspot) or 1.4
(32-bit); IBM 1.3.1 (32-bit as Classic and Hotspot) or 1.4
JJaavvaa AApppplliiccaattiioonn SSeerrvveerrss:: Windows, Solaris and Linux; BEA WebLogic 6.1,
7.0; IBM WebSphere 4.0.3 and 5.0, Advanced, Advanced Single Server,
and Advanced Developer Editions (also available on AIX); Oracle9iAS v9.0.2
or v9.0.3, Standard and Enterprise Editions; Sun ONE Application Server
(formerly known as iPlanet) 6.5 and 7.0; Tomcat 3.3.1 or 4.1

Win XP Pro, 2GHz CPU, 512MB RAM

Compuware Corporation

Specifications

Test Environment

Figure 1 Setup screen for Apache’s Tomcat server

51February 2004www.JavaDevelopersJournal.com

Another feature worth noting – it can be integrated with an
IDE. Unfortunately, the IDEs that it supports are limited. It sup-
ports JBuilder and other application server–embedded IDEs.

When you start using DevPartner you’ll notice that you
don’t have to go to its help that often, as each button provides
help statements.

Summary
I used DevPartner on a project with a Web application run-

ning on Tomcat 4.1.18. It performed fairly well compared to
similar tools in the market. It was fast to start and restart. Also,
it was pretty responsive when viewing the source code and
gathering statistics for a run.

Overall, I found DevPartner to be very useful and it can
save you tons of time and effort while fine-tuning an applica-
tion. I really would like it if it supported more application
servers and IDEs, as this tool can increase the quality of your
applications.

Figure 2 The user can run garbage collection manually

Figure 3 The method call trace view

TTaarrggeett AAuuddiieennccee:: Software developers
LLeevveell:: Beginner to advanced
PPrrooss::
• Easy to use
• Configurable
• Descriptive views
• Source code browser
CCoonn::
• Supports limited application servers

Snapshot

52 February 2004 www.JavaDevelopersJournal.com

ecently I was giving a demo of Java Web Start (JWS) to
a customer and while they appreciated that systems
management issues had been addressed, someone in
the audience said “it’s just client/client all over again –

not really client/server.” Her point was that true client/server
is about the runtime separation of the two environments, not
just deployment magic. It was my fault because I had used a
“Hello World” program to demonstrate JWS, first running it
locally and then deploying it across JWS in a “look no hands,
ma” kind of fashion. My demo slide even included the bullet
point that no changes were required in the Swing program to
allow it to run across JWS. She told me, in nice words, that I
didn’t get it because changes should be required. The runtime
dynamics of how the program should validate input and
access data are different when run locally or across a
client/server divide.

What she was looking for was a mechanism for building a
Swing program that had several pieces to it: a client that con-
cerned itself with presentation, local validation, and a richer
UI experience than HTML currently offered; a server that
dealt with issues such as persistence, concurrency, and load
balancing; a bit in the middle that was the runtime transport
layer; and a distribution mechanism for which JWS appeared
to be satisfactory.

It was a sobering discussion for me, because it made me
realize one difference between server people and client peo-
ple. In the client space we’re often obsessed with the GUI
toolkit and widget APIs. The server heads, however, seem
more focused on the application itself – the transactional
nature of the program, the workflow of tasks and data, and
issues with multiuser persistence and scalability. Architectures
such as Struts, EJB, or JavaServer Faces tackle these issues by
providing frameworks that power the application, whereas
analogous client initiatives seem lacking. GUI builders still
provide palettes of basic JFC components, but when it comes
to the question of building a scalable real-world application,
the user is often left to reinvent the wheel rather than have
these frameworks provided out of the box with J2SE.

Several good ideas came out of the ensuing conversation with
the customer regarding things they wanted to see formalized.

Separate UI and Back-End Logic
It makes sense from an object-oriented viewpoint to sepa-

rate the UI from the back-end logic, but why not have this
architected into the framework. The GUI could be separately
serialized into some kind of XML format to allow easy trans-
mission across HTTP, and arguably easier construction for
people who preferred markup languages to writing Java
Swing code. Other issues such as providing different GUIs for

levels of accessibility, countries, or hardware devices could be
achieved by providing new XML files that were dispatched
according to each client type.

Use Web Services Between the Client and Server
Communication between the two sides could be done using

Web services, so the server components are managed as a pool
of shared resources in a J2EE server that each client communi-
cates to. Having a defined protocol between the two portions
of the application insulates each side, so new implementations
of existing services can be swapped in without disrupting the
client, and likewise new clients can be created combining mul-
tiple services for a single functional task. Unlike JDBC, where
the program’s SQL exposes the structure of the server and is
thereby vulnerable to structural changes, Web services tend to
be more task-oriented, like a more traditional transaction API
providing both physical and logical separation.

For the GUI portion the beginnings of this might already be
there with technologies such as SwixML (www.swixml.org),
SwingML (http://swingml.sourceforge.net/), or the XML-
Encoder/XMLDecoder that was included with 1.4. There is
more work to be done, however, such as integration into GUI
builders, which almost exclusively serialize to Java code right
now. It’s not enough to store a GUI in XML; there is still logic

that is going to occur on the client that needs to be written, so
there should be a way that the GUI can be deserialized into
the Java client piece and elements of it can be easily accessed
– sort of like a JAXB for named Swing components or maybe
some kind of XPath solution. While proxy classes can be cre-
ated for communicating with the Web service, there are quite
a lot of code steps to go from WSDL to a usable Java API for
the GUI. Some of this could be abstracted out into reusable
components that provided dynamic bindings and config-
urable behavior. Right now the JFC includes graphical com-
ponent classes, but why not extend it to have more JavaBeans
that are less concerned with presentation, but instead know
how to broker a conversation between the UI and the data
and/or transport layer. One of the projects that I hope might
be able to provide these kind of pluggable components is Java
Desktop Network Components (JDNC) that offer the promise
of an easily customizable API for people to create the middle-
ware components currently missing in Swing. Whatever the
answer, I think that J2SE should move its focus away from the
glass and down into the application framework space. The
solution should not be demoware, however, and should
become the foundation framework for users wanting to build
large, scalable client/server applications. So instead of build-
ing wheels, developers can focus more on their domain-spe-
cific logic and less on plumbing and glueware.

Behind the Glass

Joe Winchester is a
software developer

working on WebSphere
development tools for

IBM in Hursley, UK.

joewinchester@sys-con.com

Joe Winchester
Desktop Java Editor

R

DESKTOP JAVA VIEWPOINT

H
O

M
E

D
E

SK
TO

P
C

O
R

E
E

N
T

E
R

PR
IS

E

J2SE should move its focus away from the glass and
down into the application framework space”“

• Real-World Web Services: XML’s Killer App!

• How to Use SOAP in the Enterprise

• Demystifying ebXML for success

• Authentication, Authorization, and Auditing

• BPM - Business Process Management

• Latest Information on Evolving Standards

• Vital technology insights from the nation’s
leading Technologists

• Industry Case Studies and Success Stories

• Making the Most of .NET

• Web Services Security

• How to Develop and Market Your Web Services

• EAI and Application Integration Tips

• The Marketplace: Tools, Engines, and Servers

• Integrating XML in a Web Services Environment

• Wireless: Enable Your WAP Projects and Build
Wireless Applications with Web Services!

• Real-World UDDI

• Swing-Compliant Web Services

• and much, much more!

The Best.NETCoverageGuaranteed!

LEARN WEB SERVICES. GET A NEW JOB !

SUBSCRIBE TODAY TO THE WORLD’S
LEADING WEB SERVICES RESOURCE
Get Up to Speed with the Fourth Wave in Software Development

Only $69.99 for
1 year (12 issues)*

* Newsstand price $83.88 for 1 year
Subscribe online atwww.wsj2.com or call 888 303-5252

*Offer subject to change without notice

SYS-CON Media, the world's leading i-technology publisher of developer magazines and journals,
brings you the most comprehensive coverage of Web services.

54 February 2004 www.JavaDevelopersJournal.com

hen creating user interfaces for a data entry appli-
cation (as opposed to one where the user is
directly manipulating graphics, such as a network
diagram designer), a typical scenario is to create

some containers, instantiate their layout managers, and add
some components such as JLabels, JTextFields, or JButtons.
When the application needs to gather the information
entered by the user, it accesses the components directly.
Figure 1 shows a screen with a table of information (a book
inventory) and a search area that allows users to find one of
the books by various criteria specified in the fields.

To find a book with a given word in its title or description,
the user enters the query criteria and presses the “Search” but-
ton. After the query has executed, the matching items in the
table are then highlighted. Listing 1 shows a typical example of
how the code can be written where BookSearchPanel.java cre-
ates the GUI components, then adds an action listener to the
button that, when pressed, calls a doSearch() method that uses
the current component’s values to create a search string.
(Listings 1–4 can be downloaded from www.sys-con.com/java/
sourcec.cfm.) This article shows the limitations of this coding
technique and how to improve it by using Domain GUI Objects.

Issues with a Typical Solution
In Listing 1 there is very tight coupling between the Swing

components and how the search properties are determined.
To find out if the Title should be searched, the search code
directly invokes isSelected() on the checkbox.

boolean isSearchInTitle = m_searchInTitleCheckBox.isSelected();

A problem could arise if the user interface changed – the
columns to be searched would be specified by selecting items
in a JList or highlighting columns in the JTable. The search
code would then have to be modified to use the different

components, when all that changed is how the GUI is being
presented to the user. The explicit knowledge the search logic
needs of the presentation components can be improved upon
by decoupling the two.

Another reason why Listing 1 is so poor is that it’s not the
responsibility of the search code to determine what the query
options are. That logic should be elsewhere, and only the
information on what the options are (not how they’re repre-
sented) should be required by the search code. By separating
the two, it’s possible to add features such as allowing the user
to save searches to replay later. Also, what about testing the
search code (because I know all of you unit test your code,
right?). The “quick and dirty,” tightly coupled implementation
is looking less attractive now.

Loosening the Coupling
There are a couple of choices for improving the design,

but I’ll focus on making the “bunch o’ components” into a
black box that represents a piece of the application domain.
I call this a Domain GUI Object or DGO. The goal is to turn
these components into a self-contained object that has a
queryable interface for its state. That way, instead of invok-
ing isSelected() on the “Title” checkbox directly, the code
calls isSearchInTitle() on the DGO. Listing 2 shows how the
BookSearchDgo extends JPanel and has a constructor that
accepts an ActionListener that is called back when the
search is activated. The query details are retrieved through
get methods.

public boolean isSearchInTitle() {

return m_searchInTitleCheckBox.isSelected();

}

The presentation logic is encapsulated in BookSearchDgo,
which hides its implementation from the code that performs
the actual search. This search code can be put in a separate

Turning Components into
Domain GUI Objects (DGO)
Improving your design

H
O

M
E

D
E

SK
TO

P
C

O
R

E
E

N
T

E
R

PR
IS

E

GUI

by Ted M. Young

W

Ted M. Young is a staff
software engineer

at eBay, Inc., leading the
development of internal
desktop tools using Java
and Swing technologies.

He also cofounded
LearningPatterns.com in

1996, the first Java
training company

in the U.S.

tmy@jitterpig.com Figure 1 Searchable book inventory with radio buttons for matching case

55February 2004www.JavaDevelopersJournal.com

class (BookSearch.java, see Listing 3) that registers itself with
the BookSearchDgo (using an ActionListener passed into the
DGO’s constructor), and when the “Search” button is clicked it
queries the BookSearchDgo through its public interface and
proceeds on its merry way.

public class BookSearch implements ActionListener {

private BookSearchDgo m_bookSearchDgo;

public BookSearch() {

m_bookSearchDgo = new BookSearchDgo(this);

}

public void actionPerformed(ActionEvent e) {

doSearch();

}

private void doSearch() {

boolean isSearchInTitle = m_bookSearchDgo.isSearchInTitle();

Having the BookSearch class instantiate the BookSearch-
Dgo isn’t a great way to decouple logic, but the discussion of
what creates what and when will have to wait for a future
column.

If the way the GUI appears is altered (see Figure 2), such as
the Match Case radio buttons becoming a single checkbox,
the interface remains the same and the search code is unal-
tered. This is the advantage of separating the GUI from the
search or business logic.

Loosening the Coupling Even More
Now we feel great: the user interface can change and the

search code will remain the same. Uh oh, there’s that
change of requirements again since the users want the
search to be updated in real time. As they type the search
text and check the checkboxes, they want the search to be
updated immediately without clicking on a “Search” button.
Now what?

The solution, shown in Listing 4, is to loosen the coupling at
the point where the search code assumed that it was waiting
for the “Search” JButton to be clicked (and therefore the Action-
Listener to be called). Instead of waiting for a button click, the
search code performs the search when a more “functional” or
“semantic” event occurs. For this an UpdateSearchListener
interface is created with a single callback updateSearch() call-
back method.

interface UpdateSearchListener {

void updateSearch(BookSearchDgo bookSearchDgo);

}

The BookSearchDgo accepts an UpdateSearchListener in
its constructor

public BookSearchDgo(UpdateSearchListener updateSearchListener)

and the BookSearch class implements UpdateSearchListener
so it’s no longer reliant on an ActionPerformed event:

public class BookSearch implements UpdateSearchListener {

Now the search code doesn’t know, or for that matter care,
how or why the updateSearch() method was invoked. It could
have been that the “Search” button was clicked, one of the
checkboxes checked, or just the passage of a specific interval
of time. All that the search logic knows is that it needs to
update the query, which it still does by getting the search
parameters from the DGO that are conveniently passed
directly via the updateSearch() method.

Lessons Learned
Tight coupling is bad; loose coupling (up to a point) is

good. Tightly coupled code is hard to test, hard to reuse, and
easier to break. We’ve seen two ways to loosen coupling:
1. Raise the level of abstraction: Instead of the search code

accessing the state of checkboxes, it invokes methods that
return state; instead of using ActionEvents, we use Update-
SearchEvents.

2. Reallocate responsibilities: Let the DGO collect the infor-
mation from the GUI and then pass the information to the
search code in a compact “Transfer Object” that has only
the search query data.

The Next Steps
In future columns, I’ll show how to handle continuing

changes in the requirements that affect the GUI: the items that
match the search query need to be highlighted; only items that
match the search query are shown (filtering); how to switch
between two search modes – easy and advanced; and the need
to support searching over a large number of items without
affecting performance (or at least perceived performance).

Figure 2 Modified user interface to use check box instead of radio buttons for matching case

56 February 2004 www.JavaDevelopersJournal.com

righten up your dreary application by learning how to
use Java to create and manage color. Using a color
picker makes it easy to define exact colors with alpha
transparency.

For a developer there are two situations in which color
comes up: when you are creating the colors for your interface
and when a user can define colors or manipulate images as
part of your application’s functionality. To work with color
effectively, you should know the basics of color management
and color definition.

Color Management
Color technology comes in three main types: input devices

(like scanners), display devices, and output devices (printers).
The possible color range, called the “gamut,” differs from
device to device. Because of this the colors you see in an on-
screen image will be different from those of a scanned or
printed image. Controlling the color translation between dif-
ferent environments is what color management is all about.

You can do this translation using the Java 2D API’s
ColorSpace and ICC_Profile classes. First load the profiles for
the two different environments. For the display you can use
the built-in RGB profile that is the default. For a device like a
scanner or printer, you’ll usually need to load a color profile
from a file from the manufacturer. For each of the profiles gen-
erate a ColorSpace object. ColorSpace has two methods:
toCIEXYZ and fromCIEXYZ. The CIEXYZ color space is sort of
a master color model that serves as the medium for transla-
tion. You can translate any color or image from one color
space to another by translating it first to CIEXYZ, then to the
target color space.

If you are programming for display only, that’s about all you
need to know about color management, but if you have color
input/output in your application, you may want to learn
more (see the resources section at the end of the article).

Picking Color
When users define a color, they need to have a dialog called

a color picker. Unfortunately, the color picker that comes in
the Swing package is somewhat inadequate. For one thing it
has no support for alpha transparency. Also, it’s hard to com-
pare colors and see exact hues. Figure 1 shows a color picker
that you can download from JDJ’s Web site (www.sys-con.
com/java/sourcec.cfm). This color picker allows your users
(and you) to zero in on colors more easily and includes alpha
transparency. Notice that the picker has two boxes: selected
color versus compare color, which allow the user to compare
two colors against each other. When the selection area is
clicked, the compare and selection colors swap places. This is
an efficient system for exploring and creating color.

An important consideration for color picking is that you
should stick to the HSB (Hue, Saturation, Brightness) system
rather than the monitor-oriented RGB encoding. It’s much easi-
er to define colors by starting with a hue and then modifying its
brightness (shading) and saturation (tinting) than by trying to
do an RGB mix. Table 1 shows the basic HSB combinations.

GUI Color Schemes
One way to increase the vitality of your application’s inter-

face is to create a logical color scheme. The problem with the
typical battleship gray is low contrast, so in many cases there
will be elements that are difficult for the user to read. Also it
simply does not look that good; it’s boring and monotonous.
Many developers are leery of using colors because of the diffi-
culty in finding a good matching set. You can overcome this
problem by using the same combination books graphic design-
ers use. I’ve listed such a swatch book in the resources section.

Even without using a swatch book there are some basic
rules you can apply when creating a scheme. In general, it’s
best to use a two- or three-color scheme plus highlights. In a
two-color scheme, it’s a good idea to pick two complementary
colors. In a three-color scheme start off with a triad (three
hues spaced equally). To create highlights decrease the satura-
tion of your base colors.

Other things to be aware of are the distance effect and con-
trast. When you look from afar, darker colors such as blue
fade to black faster; red and blue are inherently darker than
yellow and green. Maximizing contrast is a good policy but
having black on white can be harsh. Using a pale yellow back-
ground may provide better readability. If you need large text
to be read from a distance, for example, in a kiosk display, add
a red one-pixel outline to the letters to increase contrast.

Resources
• Fraser, B., Murphy, C., and Bunting, F. (2003). Real World

Color Management. Peachpit Press.
• Chijiiwa, H. (1987). Color Harmony. Rockport Publishers.

Using Color Technology in Java
Heighten the visual impact of your application

H
O

M
E

D
E

SK
TO

P
C

O
R

E
E

N
T

E
R

PR
IS

E

COLOR MANAGEMENT

by John Chamberlain

B

John Chamberlain,
a developer in the

Boston area, works at
OPeNDAP.org. He holds an

MS in computer science,
is a frequent contributor

to technical journals, and
has spoken at JavaOne.
Stop by his Web site at

http://johnchamberlain.com.

jdj@johnchamberlain.com

Figure 1 This picker provides good color definition

Table 1 Basic HSB combinations

Color Type Saturation Bri ghtness
Black Any 0%
White 0% 100%
Gray 0% 1-99%
Hue 100% 100%
Shade 100% 1-99%
Tint 1-99% 100%
Tone 1-99% 1-99%

3-Pack
Pick any 3 of our
magazines and save
up to $27500

Pay only $175 for a
1 year subscription
plus a FREE CD
• 2 Year – $299.00
• Canada/Mexico – $245.00
• International – $315.00

6-Pack
Pick any 6 of our
magazines and save
up to $35000

Pay only $395 for a
1 year subscription
plus 2 FREE CDs
• 2 Year – $669.00
• Canada/Mexico – $555.00
• International – $710.00

9-Pack
Pick 9 of our
magazines and save
up to $40000

Pay only $495 for a
1 year subscription
plus 3 FREE CDs
• 2 Year – $839.00
• Canada/Mexico – $695.00
• International – $890.00

RECEIVE
YOUR DIGITAL

EDITION
ACCESS CODE
INSTANTLY

WITH YOUR PAID
SUBSCRIPTIONS

*WHILE SUPPILES LAST. OFFER SUBJECT TO CHANGE WITHOUT NOTICE

A LIMITED TIME SAVINGS OFFER FROM SYS-CON MEDIA

SUBSCRIBE TODAY
TO MULTIPLE MAGAZINES

Subscribe Online Today www.sys-con.com/2001/sub.cfm

AND SAVE UP TO $400 AND
RECEIVE UP TO 3 FREE CDs!*

� Web Services Journal
U.S.- Two Years (24) Cover: $168 You Pay: $99.99 / Save: $68 + FREE $198 CD
U.S. - One Year (12) Cover: $84 You Pay: $69.99 / Save: $14
Can/Mex - Two Years (24) $192 You Pay: $129 / Save: $63 + FREE $198 CD
Can/Mex - One Year (12) $96 You Pay: $89.99 / Save: $6
Int’l - Two Years (24) $216 You Pay: $170 / Save: $46 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $99.99 / Save: $8

� Java Developer’s Journal
U.S. - Two Years (24) Cover: $144 You Pay: $89 / Save: $55 + FREE $198 CD
U.S. - One Year (12) Cover: $72 You Pay: $49.99 / Save: $22
Can/Mex - Two Years (24) $168 You Pay: $119.99 / Save: $48 + FREE $198 CD
Can/Mex - One Year (12) $84 You Pay: $79.99 / Save: $4
Int’l - Two Years (24) $216 You Pay: $176 / Save: $40 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $99.99 / Save: $8

� Linux World Magazine
U.S. - Two Years (24) Cover: $143 You Pay: $79.99 / Save: $63 + FREE $198 CD
U.S. - One Year (12) Cover: $72 You Pay: $39.99 / Save: $32
Can/Mex - Two Years (24) $168 You Pay: $119.99 / Save: $48 + FREE $198 CD
Can/Mex - One Year (12) $84 You Pay: $79.99 / Save: $4
Int’l - Two Years (24) $216 You Pay: $176 / Save: $40 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $99.99 / Save: $8

� .NET Developer’s Journal
U.S. - Two Years (24) Cover: $168 You Pay: $99.99 / Save: $68 + FREE $198 CD
U.S. - One Year (12) Cover: $84 You Pay: $69.99 / Save: $14
Can/Mex - Two Years (24) $192 You Pay: $129 / Save: $63 + FREE $198 CD
Can/Mex - One Year (12) $96 You Pay: $89.99 / Save: $6
Int’l - Two Years (24) $216 You Pay: $170 / Save: $46 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $99.99 / Save: $8

� XML-Journal
U.S. - Two Years (24) Cover: $168 You Pay: $99.99 / Save: $68 + FREE $198 CD
U.S. - One Year (12) Cover: $84 You Pay: $69.99 / Save: $14
Can/Mex - Two Years (24) $192 You Pay: $129 / Save: $63 + FREE $198 CD
Can/Mex - One Year (12) $96 You Pay: $89.99 / Save: $6
Int’l - Two Years (24) $216 You Pay: $170 / Save: $46 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $99.99 / Save: $8

� ColdFusion Developer’s Journal
U.S. - Two Years (24) Cover: $216 You Pay: $129 / Save: $87 + FREE $198 CD
U.S. - One Year (12) Cover: $108 You Pay: $89.99 / Save: $18
Can/Mex - Two Years (24) $240 You Pay: $159.99 / Save: $80 + FREE $198 CD
Can/Mex - One Year (12) $120 You Pay: $99.99 / Save: $20
Int’l - Two Years (24) $264 You Pay: $189 / Save: $75 + FREE $198 CD
Int’l - One Year (12) $132 You Pay: $129.99 / Save: $2

� WebLogic Developer’s Journal
U.S. - Two Years (24) Cover: $360 You Pay: $169.99 / Save: $190 + FREE $198 CD
U.S. - One Year (12) Cover: $180 You Pay: $149 / Save: $31
Can/Mex - Two Years (24) $360 You Pay: $179.99 / Save: $180 + FREE $198 CD
Can/Mex - One Year (12) $180 You Pay: $169 / Save: $11
Int’l - Two Years (24) $360 You Pay: $189.99 / Save: $170 + FREE $198 CD
Int’l - One Year (12) $180 You Pay: $179 / Save: $1

� Wireless Business & Technology
U.S. - Two Years (24) Cover: $144 You Pay: $89 / Save: $55 + FREE $198 CD
U.S. - One Year (12) Cover: $72 You Pay: $49.99 / Save: $22
Can/Mex - Two Years (24) $192 You Pay: $139 / Save: $53 + FREE $198 CD
Can/Mex - One Year (12) $96 You Pay: $79.99 / Save: $16
Int’l - Two Years (24) $216 You Pay: $170 / Save: $46 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $99.99 / Save: $8

� PowerBuilder Developer’s Journal
U.S. - Two Years (24) Cover: $360 You Pay: $169.99 / Save: $190 + FREE $198 CD
U.S. - One Year (12) Cover: $180 You Pay: $149 / Save: $31
Can/Mex - Two Years (24) $360 You Pay: $179.99 / Save: $180 + FREE $198 CD
Can/Mex - One Year (12) $180 You Pay: $169 / Save: $11
Int’l - Two Years (24) $360 You Pay: $189.99 / Save: $170 + FREE $198 CD
Int’l - One Year (12) $180 You Pay: $179 / Save: $1

� WebSphere Developer’s Journal
U.S. - Two Years (24) Cover: $360 You Pay: $169.99 / Save: $190 + FREE $198 CD
U.S. - One Year (12) Cover: $180 You Pay: $149 / Save: $31
Can/Mex - Two Years (24) $360 You Pay: $179.99 / Save: $180 + FREE $198 CD
Can/Mex - One Year (12) $180 You Pay: $169 / Save: $11
Int’l - Two Years (24) $360 You Pay: $189.99 / Save: $170 + FREE $198 CD
Int’l - One Year (12) $180 You Pay: $179 / Save: $1

� 3-Pack � 1YR � 2YR � U.S. � Can/Mex � Intl.

� 6-Pack � 1YR � 2YR � U.S. � Can/Mex � Intl.

� 9-Pack � 1YR � 2YR � U.S.� Can/Mex � Intl.

Pick a 3-Pack, a 6-Pack or a 9-Pack

•Choose the Multi-Pack you want to order by checking
next to it below. •Check the number of years you want to
order. •Indicate your location by checking either U.S.,
Canada/Mexico or International. •Then choose which
magazines you want to include with your Multi-Pack order.

TO
ORDER

� MX Developer’s Journal
U.S. - Two Years (24) Cover: $143 You Pay: $49.99 / Save: $167 + FREE $198 CD
U.S. - One Year (12) Cover: $72 You Pay: $29.99 / Save: $60
Can/Mex - Two Years (24) $168 You Pay: $79.99 / Save: $137 + FREE $198 CD
Can/Mex - One Year (12) $84 You Pay: $49.99 / Save: $40
Int’l - Two Years (24) $216 You Pay: $89.99 / Save: $127 + FREE $198 CD
Int’l - One Year (12) $108 You Pay: $59.99 / Save: $30
Digital Edition - One Year (12) You Pay: $19.99

CALL TODAY! 888-303-5282

58 February 2004 www.JavaDevelopersJournal.com

ast year I was introduced to the No Fluff, Just Stuff
(NFJS) Software symposium (www.nofluffjuststuff.
com) in Atlanta. It was a high-quality experience in
every aspect. The speakers delivered more than tech-

nical information, they delivered an insight into what
was happening in our industry. The Dallas edition of
NFJS (Lone Star Software Symposium) maintained (if not
exceeded) this high standard and it too delivered on the
promise of a small and very personal experience where
participants and presenters mix throughout the three-day
event.

NFJS was organized by Jay Zimmerman in 2001 after
a number of conversations he had with members of the
Boulder/Denver Java Users Groups. I was able to catch up
with Jay between sessions. During our conversation, you
could see that his meticulous attention to detail was driven
by his passion to create a forum that has garnered a lot of
respect in the industry. You can see that passion in his
words.

JDJ: Jay, what motivated you to start NFJS?
Jay: I am heavily involved in the Boulder Java User Group
and was talking to a number of people there. We thought it
would be great if we could have a technically focused
event right here in Denver. We looked at the national con-
ference model and said: what if we could localize it, focus
on technical content, and find a way to attract teams of
developers. We wanted to focus on development teams
because we’ve found that the trickle-down effect that
everyone was looking for from national conferences wasn’t
really happening. National conferences elevated the indi-
vidual who got to attend. We wanted to elevate the entire
team.

We contacted a number of companies and from conver-
sations with them, we decided that a Friday to Sunday
model would work the best. That way, companies were
willing to allow entire teams to attend, as it didn’t hurt
their immediate schedules. As it turns out, it also offered
a number of side benefits. First, most of the good speak-
ers are independents who are heavily engaged. This
schedule gave us access to those people. The other bene-
fit was that we could also attract contractors and consult-
ants as this group has long been ignored. These people
take a double hit when they take time out to attend a
conference.

There was a little resistance in the beginning, but then
things really took off when we demonstrated that we were
able to reliably provide a high-level event that is always
worthwhile and something to count on. To be a better Java
developer is worth one weekend a year of your time.

JDJ: How were you able to attract these high-caliber speakers?
Jay: We connected the dots with James Duncan Davidson and
other top-flight speakers, then things just took off from there.
The speakers like the highly interactive nature that is encour-
aged. Many of the speakers not only speak, they attend the
other seminars; they dine with the participants. The whole
structure is set up to be very personal and highly interactive.
We currently get about three to four speaker requests per
month. What we are looking for are speakers with fresh
material with a view of where the industry is going.

JDJ: Why the lack of vendor presence?
Jay: We do have a limited number of sponsorship opportunities
for passive marketing. We will distribute software and pam-
phlets, but what we are striving for is an environment that is
friendly, not disruptive. I am proud that we get comments like
“no one was selling me something.” This get kudos from the
developers and it does create a lot of goodwill with vendors.

JDJ: Is there a message that you’d like to send?
Jay: Yes. What we are trying to offer is something of extraordi-
nary value that allows companies to reward their employees
equally. Too often it is only the technical architect who gets
to go to a national conference. We, as developers, get closed
in our four walls. Once a year it’s good to peek out and get a
fresh view. And now we’re making this easier by expanding
to include 24 different stops in the U.S. and Canada.

• • •
The first lecture that I attended was a spirited talk on decou-

pling patterns presented by Dave Thomas (The Pragmatic
Programmer). Dave’s apparent meanderings were actually a
very highly structured, methodical, and entertaining presenta-
tion on couplings and how to avoid them. During the presenta-
tion, Dave proclaimed, “I hate design patterns.” His defense to
such heresy was that “patterns should not lead your designs.”
He went on to say that patterns should be used as a standard
language that describes elements of your design.

In addition to the coverage of development techniques, a
number of the seminars focused on Tiger (J2SE 1.5). Glen
Vanderburg talked about the concurrent programming fea-
tures specified in JSR 166 and Ted Neward lectured on custom
metadata specified in JSR 175. Ted is an independent software
consultant and author who “just loves to talk a lot.” I had the
opportunity to listen to Ted between sessions. Here’s what he
had to say.

JDJ: How long have you been involved with NFJS?
Ted: I’m still in my first year doing these; IIRC, my first show
was in Denver back in May. That said, almost from the very
first show, I’ve felt like I’ve found a group to which I really

No Fluff, Just Stuff:
A Just In Time Conference

INDUSTRY INSIGHT

H
O

M
E

D
E

SK
TO

P
C

O
R

E
E

N
T

E
R

PR
IS

E

Interviewed by
Kirk Pepperdine

L
An interview with Jay Zimmerman and Ted Neward

kirk@sys-con.com

Ted Neward

© 2004 SYS-CON MEDIA. ALL RIGHT RESERVED. OFFER SUBJECT TO CHANGE WITHOUT NOTICE

The World’s Leading i-Technology Publisher

Subscribe Now!

$6999
www.SYS-CON.com/JDJ

or call

1-888-303-5282

Now
More
Than
Ever
Before...

The Most Popular

i-Technology Magazine

in the World !

Means
Business

1 YEAR/
12 ISSUES

The World’s Leading i-Technology Magazine Just Got Better!

Now with expanded business coverage, JDJ is the world’s premier

independent, vendor-neutral print resource for the ever-expanding

international community of IT professionals.

60 February 2004 www.JavaDevelopersJournal.com

“belong” – my very first speaker panel with Jason, James,
Bruce, Dave, and Stu, among others, was an absolute blast
and definitely one of my favorite memories as a speaker. The
speaker panel at these shows is definitely not something to
be missed. It’s two parts stand-up comedy, two parts pithy
wisdom, one part absolute enlightenment, and that’s for
someone sitting on the panel – I can’t imagine what it must
be like to sit out there in the audience. I’m absolutely hon-
ored by the company I’m with up there; I just provide the
comic relief.

JDJ: Is there a message that you wish to impart or leave the
audience with?
Ted: Honestly – a sense of “questioning”; so many times devel-
opers simply take the marketing material spoon-fed to them
and accept it as doctrine and gospel without ever really stop-
ping to think about what’s going on under the hood. (Frankly,
who has time to do anything but take them at face value?)
But this is a correctable state of affairs simply by forcing Java
developers to slow down for a moment and think the situa-
tion through. Ever stop to think how an RMI call actually
works? Going through the mental exercise tends to yield
some interesting insights that, lo and behold, yield some
great suggestions about how to make a distributed object sys-
tem not suck. If I can get the attendees to start thinking about
these things, particularly with respect to upcoming technolo-

gies (When are Web services just like EJBs? When you use
them like EJBs. When are they better than EJBs? When you
stop using them like EJBs), then I’ve done a good day’s work.
Teach a man to fish…

JDJ:What do you draw from this symposium?
Ted: More than I’m able to put into it, that’s for sure. I get to rub
shoulders (both during the show and at the traditional Saturday
night dinner-and-a-movie gathering we do at every show) with
guys like Dave Thomas, Jason Hunter, James Duncan Davidson,
Erik Hatcher, and, of course, some of my DevelopMentor bud-
dies like Stu Halloway. I learn something new every time. On top
of which I get to meet folks I’ve never met in person before: guys
like Mike Clark, Bob Lee, Glenn Vandenburg, all of whom teach
me even more, and even meet in person the folks I’ve met before
but only over e-mail, like Bruce Tate, who’s got a great story
about how we came to know each other through Manning. :-)
More than that, though, the small-scale nature of the show gives
me the opportunity to poll the audience and actually give them
a chance to offer insights on the material I’m presenting – it
seems like almost every show I have somebody telling me some
interesting little tidbit about software that I didn’t know before. It
forces me to rethink my positions on software, and that’s proba-
bly the best benefit I can possibly imagine from a show.

JDJ: What prompted you to talk about the metadata features
in Tiger?
Ted: Officially, the stuff I’m discussing in the JSR 175 talk is still
under wraps, but considering that our Expert Group lead,
Josh Bloch, and a few others have been engaging in Webcasts
and other discussions to promote the new features of Tiger, it

seems the cat has already been let out of the bag. That said,
though, I have to prefix any talk I give on the metadata attri-
butes stuff with a standard disclaimer (and the attendees are
required to swear an oath to this effect) that if you build a
production system based on what’s presented here, you’re
liable to be pounded repeatedly with a whiffle bat until you
agree it’s a bad idea to do so.

By the time you read this, we should have released a
Public Draft, but until that actually makes the streets, every-
thing’s up for grabs. There’s also, I believe, a large mispercep-
tion among the Java community at large about what metada-
ta is and is for, mostly driven by systems claiming to be
“aspect-oriented” that use attributes to convey the sort of
interception that should take place against those methods;
the perception is that JSR 175 is going to somehow codify
that and make it a standard part of the language. Nothing
could be further from the truth, and given the venue that I’m
able to command through the NFJS shows, I’ve got a respon-
sibility, I believe, to make sure the right message goes out to
the world.

JDJ: Just what is metadata and how do you see it being used?
Ted: Officially, it’s “data about data.” In an RDBMS, it’s the
tables that describe the tables in your database instance. In
Java, metadata is the Reflection model, the classes, fields, and
methods that you build. Among other uses, it’s what allows

technologies like Java’s Object Serialization and Hibernate to
be able to reach into a Java object, discover its contents, and
scoop out (or shove in) the values stored in those fields. It’s
powerful stuff.

JDJ: You mention in your talk that this will fundamentally
change the Java landscape. Can you describe some of the
changes that you expect to see?
Ted: A lot of mechanisms currently exist to try and provide
extensions to Java’s standard metadata through various
means: J2EE uses deployment descriptors to offer custom
metadata about transactional affinity (EJB) and servlet map-
pings (servlets), while JDO uses an XML “persistence
descriptor” to describe how a JDO enhancer should modify
your compiled classes to provide transparent persistence
capabilities. Both of these things, along with many others,
can and should be codified into your compiled binary, such
that you can obtain that data without having to resort to
mechanisms stored outside of the source code. Storing it
externally to your source forces another point of mainte-
nance and introduces the possibility that a mismatch can
occur; this chance is greatly reduced, although not entirely
eliminated, when the “descriptive” data is stored inside the
source file it references. Although it’s out of scope for our JSR
to define some annotations outside of those needed for the
core functionality, I can easily imagine several annotations
that would have an immediate and powerful impact on the
community:

(*) JavaBeans "Bean", "Property", "Method", and "Event"
annotations, rather than naming patterns

Many times developers simply take the marketing material
spoon-fed to them and accept it as doctrine”“

INDUSTRY INSIGHT
H

O
M

E
D

E
SK

TO
P

C
O

R
E

E
N

T
E

R
PR

IS
E

61February 2004www.JavaDevelopersJournal.com

(*) XML Serialization enhancements (a la .NET’s XmlSerializer
attributes)

(*) Outright replacement of such “marker interfaces” as
Remote and Serializable

(*) Declarative security constraints enforced by the JVM,
rather than explicit Permission checks at the start of each
method

and so on. More and more “stuff” will be described using anno-
tations rather than external “descriptor” files, and having this
functionality built into the language and compiler will release
tools like XDoclet from trying to act like metadata attribute sys-
tems and go back to their core focus, which is code generation.

Again, so long as your readers understand that reading
this code example implies they’re taking the whiffle-bat oath,
using an annotation would look something like this:

import com.javageeks.fictitious_persistent_library.*;

@Serializable @PersistentClass(tableName="PERSON_TBL")

public class Person

{

@PersistentField(columnName="first_name")

private String firstName;

@PersistentField(columnName="last_name", type="VARCHAR(80)")

private String lastName;

// . . .

}

JDJ: What is the “Arms Length API” and do you feel that
it is important?
Ted: The “At-Arms-Length API” is our current working
term for some kind of API that would allow a tool (pre-
processor or postprocessor) to examine metadata with-
out having to load the actual class or its annotations into
the JVM. This actually has some powerful ramifications –
it means that you’d be able to load into a postcompilation
utility (like a JDO enhancer) a class whose annotation
types you don’t have on your CLASSPATH; the missing
annotations would be described, but would not be able
to be loaded until you put those annotation type binaries
into a ClassLoader that can find them. Unfortunately, it
looks like the Expert Group will have to defer defining this
particular API for the Tiger release; we’re just not sure we
can get it done in time to make the JDK 1.5 release date.
This is still a “hot” issue for the group though, so I strongly
encourage feedback through the e-mail address listed on
the 175 page at the JCP site, if readers are strongly in favor
(or opposed) to that API. As a matter of fact, I strongly
encourage everybody to have a look and see if it makes
sense to you – the more data points we as an expert group
have, the better we can make decisions that everybody
will have to live with.

• • •
Conclusion

The only disappointment I felt was when I looked at
the schedule and realized that I would not be able to
attend as many of the lectures as I would have liked.
This is a clear testament that this symposium is time
well spent.

The Leading Magazine
for Enterprise and
IT Management

www.linuxworld.com

REGULAR ANNUAL COVER PRICE $71.76

YOU PAY ONLY

$4999
12 ISSUES/YR

*OFFER SUBJECT TO CHANGE WITHOUT NOTICE

SUBSCRIBE
TODAY!

WWW.SYS-CON.COM
OR CALL

1-888-303-5282

FOR ADVERTISING INFORMATION:

CALL 201 802.3020 OR
VISIT WWW.SYS-CON.COM

There is no escaping the penetration of Linux into the corporate world. Traditional
models are being turned on their head as the open-for-everyone Linux bandwagon rolls forward.

Linux is an operating system that is traditionally held in the highest esteem by the
hardcore or geek developers of the world. With its roots firmly seeded in the open-source
model, Linux is very much born from the “if it’s broke, then fix it yourself” attitude.

Major corporations including IBM, Oracle, Sun, and Dell have all committed significant
resources and money to ensure their strategy for the future involves Linux. Linux has
arrived at the boardroom.

Yet until now, no title has existed that explicitly addresses this new hunger for
information from the corporate arena. LinuxWorld Magazine is aimed squarely at providing
this group with the knowledge and background necessary to make decisions to utilize
the Linux operating system.

Look for all the strategic information required to better inform the community on how
powerful an alternative Linux can be. LinuxWorld Magazine does not feature low-level code
snippets but focuses instead on the higher logistical level, providing advice on hardware, to
software, through to the recruiting of trained personnel required to successfully deploy a
Linux-based solution. Each month presents a different focus, allowing a detailed analysis
of all the components that make up the greater Linux landscape.

LinuxWorld Magazine
Regular features

include:

Advice on Linux Infrastructure

Detailed Software Reviews

Migration Advice

Hardware Advice

CEO Guest Editorials

Recruiting/Certification Advice

Latest News That Matters

Case Studies

SAVE 30%
OFF!

LINUXWORLD® IS THE REGISTERED TRADEMARK
OF INTERNATIONAL DATA GROUP, INC.

LINUXWORLD® IS THE REGISTERED TRADEMARK
OF INTERNATIONAL DATA GROUP, INC.

The World’s Leading i-Technology Publisher

62 February 2004 www.JavaDevelopersJournal.com

ired of using that Web access e-mail client? Going crazy
filling out those expense reports using a clunky Web-
based system? Missing the superior and responsive
desktop application? You’re not alone! According to the

usability research firm Nielsen Norman Group, “Billions of
dollars are wasted yearly in lost productivity as people wait
for Web pages to perform duties that could be better handled
by a 1984 Macintosh-style GUI application.”

The promise of Web architecture (no deployment, large
scalability, no firewall opening) is hard to refuse. Yet the wide
deployment of HTML-based applications has left end users
craving for a responsive and productive user interface. There
have been several efforts to combine both the Web and the
rich UI (DHTML/ActiveX/Java applets). Unfortunately, these
add more pain rather than soothe.

The Droplets application platform, with the User Interface
Server and the SDK, enables developers to create software
that combines the convenient, instant deployment benefits of
the Web with the high usability and rich UI of traditional
clients. Droplets GUIs can be dragged directly off of Web
pages and onto the desktop, acting as double-clickable icons
to launch Web-based apps that look and feel like Windows
applications. As there is zero application code on the client
machine, Droplets is less prone to security breaches.

Droplets Overview
Droplets has a downloadable SDK from the Droplets Web site

developers zone (www.droplets.com/developer). There is an
initial evaluation license and plenty of starter materials (tutori-
als, samples, documentation) to get started. The first time I
installed Droplets and tried it out, I could get to a quick sample
of mine in less than two hours. Command-line and Notepad-
based development is possible. Droplets also has a plug-in for
JBuilder and Eclipse. Easy integration with webMethods’ Glue
makes it possible to hook up with back-end Web services.

The key components of Droplets are as follows.

Droplets UI Server
The Droplets UI Server hosts application logic, instructs

the client about GUI rendering, manages client connections,
and provides GUI updates in response to both user-initiated
and server-side events. The UI Server can also integrate with
application servers and back-end components like XML–Web
services or EJB/CORBA.

Droplets Client
The client is a lightweight engine transparent to the end

user that renders all Droplets applications at the client com-
puter. The Droplets client does require a small, one-time
download (~1MB). Thereafter, no application downloads are
required and all upgrades are automatic on application start-
up. The client has two responsibilities: the presentation of the
GUI and the reporting of user events to the UI Server. To
accomplish this, a small (1–2KB) text file called a “DRP” is
used. It holds basic information like the server URL, the server

port, and the name of the Droplet to present. The Droplets
client also has the ability to support a “Dripline”, a desktop
alert that allows the UI server to contact a client whenever the
state of a given Droplet has changed. This allows the client to
update the Droplet’s desktop icon, e.g., alerting the user of
server events like a change in a stock price or an inventory
level dipping below a threshold.

Communication Layer Enables Superior Performance
The Droplets client and server communicates via an opti-

mized communications layer running over TCP/IP sockets.
The UI Server instructs the client as to the layout of the appli-
cations at start-up, and transmits both server-side and user-
initiated updates. Droplets transmit only events and individ-
ual field updates, whereas an HTML-based application
reloads the entire page for each user event. This makes a
Droplets application faster and requires less bandwidth than
an equivalent Web application.

Somnath Banerjee is the
founder of MEC Technologies,

a provider of Web services
and X-Internet–related

technology products and
services. He has 18 years

of experience in the
development of software
products. Somnath has a

BS in EE from the
Indian Institute of Technology

and an MS in CS.
He has authored

several technical papers
and shares patents.

sbanerjee@mectechnologies.com

Droplets by Droplets Inc.

LABS

H
O

M
E

D
E

SK
TO

P
C

O
R

E
E

N
T

E
R

PR
IS

E

Reviewed by
Somnath Banerjee

T

Figure Overall Droplets Architecture

In
te

rn
et

Droplets
UI Server or

Client
UI

Optimized
Communication

Layer

Droplets
User Interface

Server

Application
Business Logic

Backend
Resources

Applications

EJB

Servlets

Application
Server

Database

Live Feeds

Legacy Systems

Web Services

2002 Droplet, Inc.©

Figure Saleslogix like App Screen

63February 2004www.JavaDevelopersJournal.com

Droplets SDK
The Droplets Software Development Kit (SDK) is a remote GUI

toolkit that allows development using a single standard language.
Java and C++ are the current choices. OO-COBOL, C#, and VB
should be available in early 2004. The API library is based on Java’s
AWT package and also incorporates components and interfaces
from the Swing package. The Droplets platform provides several
infrastructural components such as networking, encryption sup-
port, an authentication mechanism, and monitoring. Droplets’
server-based architecture allows customization of the look and
feel of application instances via “skins,” allowing enterprises to
blend the Droplet into the look of their other online content.

A Real-Life Scenario
The following is an example of a real-life scenario: a large

chemical company uses a standardized set of key business per-
formance measures. The company’s executives use the key meas-
ures that span financial, economic, and customer satisfaction
data to make critical business decisions. A business intelligence
system from COGNOS was used to gain visibility into a number of
different business units using various IT systems. There are over
200 business units, and each unit is measured by around 50 mea-
sures. This data is currently loaded every month through a com-
plex ETL procedure, then Excel and paper reports are prepared for
the management. These reports are available every 30 days and
are largely static in nature. However, the existing Web-based GUI
was too slow, cumbersome, and user-unfriendly. It became so
unwieldy that the management staff preferred paper reports.

MEC Technologies was hired to build a management dash-
board to improve the ease of accessing and reporting data for
the management staff. While enriching the end-user experience
was critical, it was also important to use industry-standard XML
Web services to integrate data from BI Systems, back-end DB,
and other third-party data sources. Considering the user base, a
highly polished and easy-to-use application was desirable.

Using the Droplets Java API, an executive management
dashboard was developed in less than two months. Since
the entire application was server-based, hooking up with back-end
Web services was quite simple. Initially, both Apache Axis and
webMethods Glue were used to create Web services proxies and
access the measures data. Finally, webMethods Glue was chosen.
The user community used NTLM security to get authenticated and
then access a URL within the intranet. That URL would launch the
Droplets application. Most users remained with the browser-based
UI. However, a few advanced users preferred to use the Droplets
client. A controlled version was beta tested by the financial ana-
lysts community. Once they were satisfied, the application was
launched in production for the executive management staff.

Experience Summary
The overall experience of developing with Droplets and using it

was quite encouraging. There were very few platform- and
Droplets (SDK)- related roadblocks. Data integration (using Web
services) was simple due to the server-side architecture and usage
of XML and SOAP-based services. Thanks to the Droplets system
and access logs, debugging applications during development and
production was easy. Session-specific debugging was also
enabled. What was really nice was the post-production extension
of the application. An application-level usage reporting module
was requested, and it was developed and deployed in less than
two weeks. The entire new application extension was launched
with minimum downtime.

Conclusion
The Droplets platform presents a nice alternative for both

developers and IT managers. Developers can use their favorite

IDE and use a high-level component-based environment. IT
managers can still enjoy their zero-touch deployment.

Microsoft has recognized this space and presents a solid case
with smart clients (www.microsoft.com/net/products/client.asp).
Let’s compare Droplets with .NET smart clients.

With smart clients, any machine that has a .NET CLR installed
can download a .NET assembly and can do anything that the CLR
classes and the security framework allow, so it fits the “rich
client” aspect quite nicely. On top of this, .NET allows automatic
synchronization of code versions. The IEEXEC component (inte-
grated with IE) keeps a local cache synchronized with the server-
side assembly and does delta updates automatically.

Droplets, a Java-based server, is platform independent.
Currently it runs on Windows, HP Unix, Sun Solaris, and main-
frame Linux. Microsoft .NET remains a Windows family–only solu-
tion. This is major for IT shops having disparate systems and trying
to put sharper front ends to their traditional back-end systems.

Smart Clients Promise Offline Capability
The Droplets platform always needs a network connection to

the server. However, smart clients are capable of working with local
caches (both file system and DB engine based). The promise of
being able to work on an application with or without a network
connection is huge and will fuel an entire class of on-the-road
applications.

However, Droplets has a strong story in the security area. A .NET
smart client depends on code being downloaded to the client machine
and running on an environment managed by a CLR. It’s quite cumber-
some to set up the client-side privileges of downloaded code using the
Code Access Security (CAS) model. This also leaves much to worry
about considering what security door might be left open in down-
loaded code, exposing it to some serious security breach.

The Droplets platform presents a compelling option for building
rich Web applications using a secure and a platform-independent
architecture.

Resource
• Source code: www.sys-con.com/java/sourcec.cfm or

www.mectechnologies.com/articles/JDJ/Droplets/Trader.zip

636 Avenue of the Americas
New York, NY 10011
WWeebb:: www.droplets.com
PPhhoonnee:: 212 691-0800
FFaaxx:: 212 691-6335

• Deploys standalone, or with any J2EE-compliant application server
• Supports Windows NT, Windows 2000, Linux, Solaris
• Programming tools for Java and C++; OO Cobol and VB.Net coming soon
• Integration with Borland JBuilder; Oracle JDeveloper and Eclipse in beta
• Windows, Linux, Unix, wireless devices as standalone apps/within a Web browser
• Integrate with Web services protocols with webMethods’ Glue

Droplets Inc.

Specifications

PPrrooss::
• Easy-to-build, highly rich Web-based applications
• Secure application deployment
• Java-based server enables cross-platform support
CCoonn::
• No offline capability

Snapshot

64 February 2004 www.JavaDevelopersJournal.com

elcome to the February edition of the JCP col-
umn! Each month you can read about the Java
Community Process: newly submitted JSRs, new
draft specs, Java APIs that were finalized, and

other news from the JCP. This month I’ll discuss four new
JSRs and a few JSRs that are in the Proposed Final Draft and
Public Review, and one final JSR.

Let’s Start with J2ME Technology
A new JSR in this space is JSR 238, Mobile Internationali-

zation API. It proposes to add culturally correct data format-
ting, and the sorting of text strings and such for MIDlets in a
CLDC/MIDP environment, according to its submitter Nokia.
The broad support for internationalization that you find in
the J2SE platform is not part of the CLDC/MIDP environ-
ment because of memory footprint constraints. This optional
package will deliver the appropriate level of internationaliza-
tion functionality to Java-based devices.

JSR 226, also by Nokia, has reached Community Review.
This JSR defines an API for scalable 2D vector-based graph-
ics for J2ME technology, building upon the W3C specifica-
tion for the Scalable Vector Graphics (SVG) format. This JSR
was submitted this past summer and has made good
progress through the process, reaching this milestone six
months later.

Next, J2SE Technology
Late December 2003, the spec lead and expert group for

JSR 127, JavaServer Faces, submitted the Proposed Final
Draft for this API. This JSR defines a series of JSP tags and
Java classes that enable the developer to build richer and
more appealing user interfaces for Web-based applications
than is achievable with just JSPs and servlets.

The next JSR I’ll discuss just entered Public Review. JSR 200,
led by Sun, involves a network transfer format for Java
archives. The aim of this JSR is to deliver a dense download
format for class files that can create much smaller archives
than compressed JSR files. Once final, the technology will be
delivered as part of the next version of the J2SE platform, aka
“Tiger.”

Then, J2EE Technology
The J2EE environment has seen the most activity in the

last month or so. The J2EE 1.4 JSRs went final, of course, but

what I’d like to discuss now are three new JSRs, one JSR in
Public Review, and one final.

BEA and IBM submitted three new JSRs to the Community
for approval for development. JSR 235 proposes an API for so-
called Service Data Objects (SDO). SDO is roughly based on
the Data Transfer Object pattern that many J2EE developers
are familiar with. The JSR proposes to standardize Data
Objects functionality with regards to changing the history,
metadata, XML support, and neutral representation of busi-
ness data among other things. JSR 236 proposes a timer for
the Application Servers specification. It would provide an
alternative to the existing java.util.Timer package and the
Timer API in JMX. The third JSR is JSR 237, Work Manager for
Application Servers. The submitters propose to provide an
API to enable the concurrent execution of application-level
work (for example, made up of EJB components or servlets) in
J2EE-based environments. This JSR is closely related to JSR
166, which provides such facilities for J2SE 1.5 environments.

JSR 206 works on the next version of the Java API for XML
Processing (JAXP), now in its third generation within the JCP,
reaching Public Review 10 months after its submittal. There
are several new main areas – XML 1.1, name spaces in XML
1.1, Document Object Model level 3, and SAX (Simple API for
XML) version 2.0.1.

I’ll complete this section on J2EE-related JSRs with the Rule

Engine API for Java led by BEA. JSR 94 successfully passed the
Final Approval Ballot in December. It is BEA’s first JSR to become
final and thus a “well done, lads!” to BEA. The API aims to reduce
the development cost coming from incorporating business logic
within applications by capturing this logic in sets of rules upon
which operations and calculations can be performed.

Closing Remarks
By the time you read this column, the JCP.org Web site will

look a little different than before. Its redesign will make it
easier for you to find news about the JCP and about the JSRs,
so you can quickly see if there’s something new regarding
your favorite JSRs and download the most current drafts.
More changes are in the pipeline for the early March time
frame, when the launch of JCP 2.6 is planned.

That’s it for this month. I’m very interested in your feed-
back. Please e-mail me your comments, questions, and
suggestions.

From Within the
Java Community Process Program
From proposals to final approvals

JSR WATCH

H
O

M
E

C
O

R
E

D
E

SK
TO

P
E

N
T

E
R

PR
IS

E

Onno Kluyt

Onno Kluyt is the
director of the

JCP Program
Management Office,

Sun Microsystems.

onno@jcp.org

W

JCP.org’s redesigned Web site will make it easier for you to find
news about the JCP and about the JSRs”“

65February 2004www.JavaDevelopersJournal.com

Clustered Timers
Often, when someone asks how will we

scale the Web application we’re about to devel-
op, we look at them, smile, and say, “Not a
problem – we’ll just cluster the application
servers.” Clustering our application across multi-
ple servers provides us with the ability to han-
dle large volumes of traffic and to scale systems
by adding additional servers to the cluster.

The Perils of Copy-Paste Coding
Copy-paste coding is the practice of copying

a portion of existing code, pasting it elsewhere,
and modifying this new version to solve a
slightly different problem than the original one.
This article provides a number of suggestions
on how to refactor copy-paste code into cleaner
code that’s easier to test and maintain.

Client/Server Is Not the Only Fruit
The vast majority of Java enterprise appli-

cations are architected along the lines of
Sun’s original PetStore showcase application.
Rather than seeing this as a market stall dis-
playing all the J2EE goods available, develop-
ers took it as a blueprint for enterprise appli-
cations. This article briefly describes some of
the testability shortcomings of the traditional
J2EE model and presents some alternatives.

Extreme Analysis
Whenever I read about XP, everything

seems to be known and crystal clear for the
customer and the developer. Everybody just
has to sit down, write down the user stories
or whiteboard sketches of forms or workflows
with a few entry fields and some buttons…
But what about the business analysis? A set
of stories can build a nice set of features to
implement and, depending on the analytical,
creative, and communication skills of your
developers, I believe you can build a nice sys-
tem if it’s implemented story by story.

Building a Connected MIDlet, Part 2
In Part 2 in this series devoted to develop-

ing a connected MIDlet, we’ll refine the
design of the application, add a few features
that are essential to any connected MIDlet,
and implement exception handling. By the
end of this article, you’ll know how to break
up a single-class application into better parti-
tioned packages and classes, invoke a new
method in a background thread, interrupt an
ongoing background thread, and gracefully
handle application-specific exceptions.

FPO

Advertiser Index

GGeenneerraall CCoonnddiittiioonnss:: The Publisher reserves the right to refuse any advertising not meeting the standards that are
set to protect the high editorial quality of JJaavvaa DDeevveellooppeerr’’ss JJoouurrnnaall. All advertising is subject to approval by the
Publisher. The Publisher assumes no liability for any costs or damages incurred if for any reason the Publisher
fails to publish an advertisement. In no event shall the Publisher be liable for any costs or damages in excess of
the cost of the advertisement as a result of a mistake in the advertisement or for any other reason. The
Advertiser is fully responsible for all financial liability and terms of the contract executed by the agents or agen-
cies who are acting on behalf of the Advertiser. Conditions set in this document (except the rates) are subject to
change by the Publisher without notice. No conditions other than those set forth in this “General Conditions
Document” shall be binding upon the Publisher. Advertisers (and their agencies) are fully responsible for the con-
tent of their advertisements printed in JJaavvaa DDeevveellooppeerr’’ss JJoouurrnnaall. Advertisements are to be printed at the discre-
tion of the Publisher. This discretion includes the positioning of the advertisement, except for “preferred posi-
tions” described in the rate table. Cancellations and changes to advertisements must be made in writing before
the closing date. “Publisher” in this “General Conditions Document” refers to SYS-CON Publications, Inc.

BEA Systems http://dev2dev.bea.com/workshop1 800-817-4BEA Cover II

Borland www.go.borland.com/j3 831-431-1000 9

Computer Associates www.ca.com/lifecycle 631-342-6000 13

Compuware www.compuware.com 800-COMPUWARE 21

Crystal Decisions www.businessobjects.com/v10/047 800-877-2340 19

CTIA Wireless www.ctiashow.com 301-694-5243 47

Cyanea www.cyanea.com/wsdj/underpar.html 877-CYANEA8 3

DataDirect www.datadirect.com/jdj 800-876-3101 7

Dice www.dice.com 877-386-3323 31

ESRI www.esri.com/mapobjectsjava 909-793-2853 35

Extentech extentech.com/jdjxls/ 25

Google www.google.com/cacm 39

GreenPoint www.webcharts3d.com/demo 212-765-6982 51

ILOG jviews-info-kit.ilog.com 1-800-for-ILOG 29

Infragistics, Inc. www.infragistics.com 800-231-8588 14-15

InterSystems www.intersystems.com/match3 617-621-0600 4

iSavix http://isavix.net 703-689-3190 45

Java Developer’s Journal www.sys-con.com/java 888-303-5282 59

LinuxWorld Magazine www.linuxworld.com 800-303-5282 61

Mercury Interactive www.mercuryinteractive.com/optimizej2ee 800-837-8911 11

NetIQ www.netiq.com/solutions/web 49

Northwoods Software www.nwoods.com/go 800-434-9820 43

Oak Grove Systems www.oakgrovesystems.com/jdj 818-440-1234 33

Parasoft Corporation www.parasoft.com/jdj_02 888-305-0041 23

PortalVU www.basicportal.com/nyc 27

Quest Software, Inc. http://www.quest.com/jdj 800-663-4723 Cover IV

Software FX www.softwarefx.com 800-392-4278 Cover III

SYS-CON Publications www.sys-con.com/2001/sub.cfm 800-303-5282 57

SYS-CON Reprints www.sys-con.com 201-802-3026 55

WebAppCabaret www.webappcabaret.com/jdj.jsp 831-464-6941 37

Web Services Journal www.wsj2.com 888-303-5252 53

Wily Technology www.wilytech.com 888-GET WILY 41

Advertiser URL Phone Page

This index is provided as an additional service to our readers. The publisher does not assume any liability for errors or omissions.

Next Month
Oracle’s SVP Thomas Kurian on the business

impact of grid computing

Industry Perspective

Thomas Kurian

Controlle

View

66 February 2004 www.JavaDevelopersJournal.com

Offshore Outsourcing:
Magic Bullet or Dirty Word?

@ THE BACKPAGE

H
O

M
E

C
O

R
E

D
E

SK
TO

P
E

N
T

E
R

PR
IS

E

Jack Martin, editor-in-chief
of WebSphere Journal, is

cofounder and CEO of
Simplex Knowledge

Company, publisher of
America's Job Market,
the only independent

source for unbiased
advice about careers.

Simplex developed the first
remote video transmission

system designed specifically
for childcare centers and

the world’s first
diagnostic-quality

ultrasound broadcast
system. Jack is coauthor

of the upcoming book,
Understanding WebSphere,

from Prentice Hall.

jack@sys-con.com

Jack Martin

n the world of IT, outsourcing is either the dirtiest word
you can utter or a brilliant one; it’s all about who says it to
whom and where it is said.

No matter who uses it, it is a word most often said in
private. When corporate managers use the word, it is
always mentioned in a most confidential fashion as a
potential cost-cutting tactic, a magic bullet to increase
margins.

When technical people use the word in public it is always
with a hushed tone, as if speaking it aloud would give man-
agement the idea. In private it is discussed as if it were the
greatest evil ever to befall the world, a faceless monster from
far away.

The reality falls somewhere in the middle.
Outsourcing can be an extremely complex and compli-

cated undertaking. Each piece of the process needs to be
considered with great care and executed with precision.
There is little margin for error halfway around the world.
Once a company decides to outsource its code, program-
mers know their days are numbered. It’s just a question
of when the ax will fall. It is also just a matter of time
before a major project goes completely out of control
and craters, leaving hapless managers thrashing about
with a project team in India.

So today we have corporate managers blindly sen-
ding work halfway around the world – and an endless
drain of jobs overseas. Who came up with this latest
corporate fad? How we got here is an interesting
paradox.

Let’s take a walk down memory lane. During the dot-
com days, American code writers as a group became major
prima donnas. It all started with the attitude, “I’m a pro-

grammer and I can wear anything I want to work,”
which was taken to the extreme by some people.
Management was wearing suits and in contrast the
programmers looked like they came from some alien
planet. The more outrageous the better.

From there, showing up at work at the same time
as the rest of the staff became optional – the later the
better – with the excuse that they were up all night writ-
ing code. It’s true that a lot of code writers were up late
at night writing code, but often not for their day job.
An awful lot of people were busy writing code at night
for dotcom business plans with IPO dollars in their
dreams, while the more pragmatic moonlighted for

other companies desperate for anyone who could write
code.

Then the “I have to bring my dog to work” concept
started. All of a sudden a menagerie of pets started show-
ing up at work. Further, some programmers demanded
and received trampolines. And not being happy even
with all this, everyone was always ready to jump ship
for more money and toys.

The final straw was the attitude, “I must work from
home; you people are distracting me and I do much
better work at home.”

Well, to quote John Lennon, “The dream is over.”
There is no question that outsourcing is bad for

America. I look at this every day, editing America’s Job
Market (americas-job-market.com). Quarterly driven cor-
porate greed perpetuates the practice. If things continue
in the direction they are currently going, corporate
America will someday have to begin outsourcing cus-
tomers for their products.

Outsourcing can be an extremely complex and complicated
undertaking. Each piece of the process needs to be considered with

great care and executed with precision. There is little margin for error
halfway around the world. Once a company decides to outsource its

code, programmers know their days are numbered. It’s just a question
of when the ax will fall”

“

It all depends on your perspective

I

